

The Global Artisan C-Sink

Methodology for the certification of biochar-based C-Sinks, where the biochar is produced with artisanal, non-industrial, methods of flame-cap (Kon-Tiki) pyrolysis.

The geographical scope of the Global Artisan C-Sink is limited to low-income, lower middle income and higher middle-income countries as defined by the World Bank classification of countries

12/01/2023

The first third-party certification for biochar-based C-sinks under the European Biochar Certificate is operational since 2020.

→ However, covers only C-sinks from centralized, industrial biochar production. Direct link between certifier and producer.

Background

ithaka institute for carbon strategies

Why do we need a certification scheme for biochar-based C-sinks produced by smallholder farmers? (decentral/non-industrial)

 Readily available and scalable CDR relies on photosynthesis for CO₂ extraction (biomass/land-based solutions).
 This process is fasted in the tropics.

 Smallholders are in stewardship of most of the agricultural land. Methods to promote and certify decentral biochar production are necessary - otherwise, we lose the largest share of the potential!

Certification of C-sinks can provide **financial incentives for scaling** this multifunctional solution.

Build-up of SOM

Concept and Structure

ithaka institute for carbon strategies

The Guidelines regulate:

- Eligible pyrolysis technology
- Sustainable biochar feedstock
- Training of the biochar artisan
- Smartphone based monitoring (dMRV)
- Methane compensation
- C-Sink calculation
- Transparency of benefit sharing
- Accreditation of monitoring apps and C-sink managers

12/01/202

Pyrolysis Technology and Biochar Feedstock

Low-technology solutions that combust the pyrolysis gases.
 Kon-Tiki flame curtain pyrolysis (most common) or TLUD.

- Feedstock: sustainably sourced farm residues (straw, leaves, branches, kernels, pruning material). Food processing residues, fallow crops, dedicated biomass. Excluded: Forest biomass.
- Must be stored dry and aerated.
- Must be dry at time of pyrolysis (max 30% moisture)

Training of the Artisan

"It is not the Kon-Tiki technology as such that can be certified but only the combination of the technology and the executing artisan – the artisan biochar producer"

Training must cover:

- Principles of feedstock selection
- Biomass drying
- Kon-Tiki operation
- Volume measurements
- Post-pyrolytic treatment
- Agronomic use of biochar
- Use of the Artisan App (Participatory dMRV)

Training must be completed by a successful examen.

Monitoring: The Artisan App

- Data collected by the C-Sink manager → Certifier/C-Sink Registry
 - Create account for each C-sink farmer
 - Upload training certificate
 - Register available biomass (GPS of farm + crop rotation)
 - Pyrolysis technology
 - Documentation of biochar production
 - Feedstock description
 - **Geo- and time referenced pictures** of process and product.
 - Final volume produced
 - Documentation of application/mixing of biochar (amount/date/location)
 - (Sale/Transport)
- Biochar Samples:
 - Artisan: No analytic- and retention samples required.
 - Database on biochar characteristics is available.
 - Analysis only if unknown/novel feedstock.

Methane Compensation

- Mean **0.03 t methane emissions per 1 ton biochar** produced via Kon-Tiki pyrolysis (Cornelissen et al. 2015).
- Methane **GWP20** = **86** t **CO**₂ t^{-1}
- Methane emissions must be compensated.
- Avoidance of uncontrolled decomposition or uncontrolled burning of biomass in the baseline scenario through controlled pyrolysis in project scenario.
- Compensation by avoidance only approvable for 10 years (transition period)
 - → new practice becomes common practice.
- Active Methane compensation e.g., through tree planting. Trees must be registered by C-sink manager

ithaka institute for carbon strategies

Michelia Champaca

years since plantation

30kg CH4 *86 = 2.58 t CO₂ 2.58 t CO_2 /0.38 t CO_2 = 7 *M. champaca* trees

Figures: Biochar Life, Global Artisan C-Sink Guidelines

C-Sink Calculation

- C-Sink farmer (Artisan) document the feedstock type used, and the volume biochar produced and applied. Using biochar bulk densities (t/m³) and C-contents from the feedstock data base, the gross C-sink is calculated.
- 1000 l coconut-husk biochar * 0.19 t/m³ * 80% C-content * 44/12 = 0.56 t CO2 (gross)
- From the gross C-sink carbon expenditures are deducted. If transport is <100 km all expenditures are covered by a 3% security margin.
- To account for **potential decay** of the labile biochar fraction, once applied to soils, a highly conservative fraction of 26% is deducted.
- $0.56 \text{ tCO}_2 * 0.97 * 0.74 = 0.4 \text{ t CO}_2 \text{ (net)}$
- Price per tCO2 ~ 100-150€
- Direct money transfer to farmers (mobile money)
 - Benefit sharing ratio must be transparent.

Artisan Pro

- Annual production of 100-1500m³ biochar per year.
- Tighter MRV (Analytical sample and retention samples must be provided; annual on-site visits; check of feedstock supply chain)
- If >1500m³ a roadmap towards industrial solutions must be provided. → Kon-Tikis serve only at bridge technology!

Biochar Sale

- Sale/transport in a 100km range is possible.
- For longer distances a tracking system must be provided
- No sale to a different country (except cross border regions)

Additionality and Exclusivity

- Biochar application is no common practice.
- Occurs only at scale after active training and monetary incentive
- The creation of biochar-based C-sinks is thus clearly additional.
- No Artisan certification on areas included in certified SOC programs! This would cause a double-counting of C-sinks.

Reference Project: Artisan Biochar Life (C-Sink Manager)

- Impact venture of Warm Heart Foundation targeting biochar production at small-holder farm scale
- Improved food security, farm income, better livelihood, climate change mitigation.
- Operating in Kenya, Malawi, Thailand, Tanzania and Indonesia
- Currently ~734 famer engaged and ~ 5000 t CO2 C-sink produced (1.900 t CO2 certified as of November 2022)
- 80% C-revenue returned to farmer (Total 2022: 100.000 USD or 140 USD/farmer)
- Outlook: Strong momentum in East Africa, expansion to >100.000 t CO2 in 3 years. Further projects is SE Asia, strategic partnerships with USAID, UN FAO, NORAD...

Reference Project: Artisan <u>Pro</u> Planboo (C-Sink Manager)

- Operating in Sri Lanka (Cinnamon plantation, rubber plantation), Malawi (Bamboo plantation) and Namibia.
- Using scaled Kon-Tiki technology (round or square Kon-Tikis producing several m³ biochar per batch)
- Single operations with > 100 m³ biochar / year
 (some 100-1000 t biochar/ year)
- Strong demand for such C-sink solutions
- Proposals from 11 countries in the pipeline.

Global Artisan C-Sink Guidelines are available here:

EBC C-Sink Guidelines & Documents

https://www.european-biochar.org/en/ct/139-C-sink-guidelines-documents

Contact

Carbon Standards International: info@carbon-standards.com

Ithaka Institute: mzd@ithaka-institut.org

PDF

For Industrial Biochar Production

The EBC C-Sink Guidelines are available here:

EBC C-Sink Guidelines & Documents

https://www.europeanbiochar.org/en/ct/139-C-sinkguidelines-documents

Contact

Carbon Standards International: info@carbon-standards.com

Ithaka Institute: hagemann@ithaka-institut.org

PDF