

### **LOW CARBON AGRICULTURE:**

# MAIN LESSONS & ISSUES FROM THE CROP « LABEL BAS CARBONE » APPROACH

# Agenda



- 1. Low Carbon Agri what is at stake?
- 2. The french « Label Bas Carbone » crop method

# EU GHG/carbon targets



2020

2030

2050

**Emissions reduction** / 1990

**Balance** 

-20%

-40%



-55%

**Carbon neutrality** 

# Carbon neutrality



- Three key concepts to understand
  - Reducing carbon emissions
  - Increasing carbon storage
  - Carbon neutrality





# Carbon & Agriculture



#### And Agriculture?

"Agricultural activity is one of the causes of climate change...

...but also one of the solutions

Potential carbon sink



#### 2 challenges for agriculture:

- 1. Reduce its emissions
- 2. Increase soil carbon sequestration

#### **Green Deal / Farm to Fork**

#### 4p1000 initiative:

- Intermediate crops
- Agroforestry
- Hedges
- Grasslands

• ....



## The French low carbon label



Created and entered into force in November 2018 Incentive for Local GHG emission reduction projects (avoided emissions+ carbon sequestration)





# II. Functioning of the label



The scheme is open to all types of investors (public or private, national or foreign) but projects must be located in France (mainland or oversea)

### The French low carbon label





### II. Requirements and safeguards

- Emission reduction are monitored accurately (discounts may apply) and verified by an independent and qualified auditor, according to modalities specified in the method.
- Additionality is assessed relative to a baseline scenario, determined in the method:
  - ✓ Likely situation in the absence of labelling
  - ✓ Regulatory requirements and common practice
  - ✓ Incentives provided by other instruments than the label
- → Only emissions reductions that go beyond the baseline scenario are recognized



Taking into account the **risk of non-permanence** and of **release of carbon**, by applying discounts



### The French low carbon label





## II. How to manage uncertainty

- Need to find a balance between MRV cost and robustness
- Use of discount (ex: -10%/-20%) for specific part of the calculation
- Discounts are used for :
  - In case of uncertainty of the datas
  - In case of uncertainty of the relevance of parameters
  - To deal with **non permanence** of emissions reduction or removals
- Discounts are applied depending of the methodology and the project
  - Ex: In Forest project, discounts level linked with the risk of forest fire depend of the region in France



 A methodology can include different options depending of the quality of the data/parameters



### The French low carbon label - Methods









Drafted in 2020 by Field Crop technical Institutes
Large inclusive & scientific approach
Approved in August 2021





Carbon credits = GHG reduction (emission + soil carbon storage)

#### Scope



GREENBACK





# LBC agri project timeline





#### Scope of emission reductions





- Emissions avoided and removals are included but calculation are separate
- **Possibility to include upstream and downstream of GHG emissions** of the projects if the methodology is robust (ex: emission factor of the production of synthetic fertilizer)
- By default only Emissions reduction during the duration (5 years) of the project
- For Carbon removal in biomass, possibility to include anticipated removal
   Not applied in this method



# Scope of actions : examples



✓ The eligible levers can be chosen for each project:

|                                           | UPSTREAM                                         | ON-FARM                                                                                                                     |                                                                                | DOWNSTREAM                                                           |
|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                           |                                                  | GHG emissions avoided                                                                                                       | GHG Sequestration                                                              |                                                                      |
|                                           | Purchase of fertilisers (production)             | Reduce the amount of mineral nitrogen applied on crops                                                                      | Increase the amount of biomass returned by cover crops                         | Reduction of GHG emissions from harvests storage by storage agencies |
|                                           | Purchase of fuel for fertilisers                 | Improving the efficiency of nitrogen application and                                                                        | Increase the restitution of crop residues to the ground                        |                                                                      |
|                                           | Purchase of fuel for irrigation                  | plant uptakes                                                                                                               | Increase applications of organic                                               |                                                                      |
|                                           | Purchase of fuel for storage or drying buildings | Introduce legumes into rotation or crops/varieties with lower nitrogen requirements  Direct emission of CO2 through engines | fertilisers or organic amendments                                              |                                                                      |
|                                           |                                                  |                                                                                                                             | implantation or lengthening the temporary & artificial grasslands in rotations |                                                                      |
| ARVALÍS<br>Inditet du végétal Indirect ER |                                                  | Direct ER (or classical ER)                                                                                                 |                                                                                | Indirect ER                                                          |





ER SOC storage:

# For each cropping systems, Soil Carbon storage **AND** GHG emissions have to be calculated



✓ Compulsory to calculate both as soon as one lever is chosen

#### Why?

for example:

- a lever storing more SOC could be the increase of biomass restitution to the soil by cover crops.
- A way to reach this goal could be the nitrogen fertilisation on cover crops.
- But more fertilisers would also mean an increase in GHG emissions.

The project has to check that :

ER <sub>emissions</sub> + ER <sub>SOC storage</sub> > 0



Two types of references can be used depending on the kind of data available on the farm:

- "Specific reference": use real data from the farm (the 3 years before project)
- "Generic reference": a database made up from French statistics and surveys on farms; at the department level





#### Co-benefits evaluation





#### References also available for co-benefits



Estimation of other impacts and co-benefits of the projects

#### Pressure on resources and air or water quality

- Amount of nonrenewable (or low) resources
- Soil quality
- Air quality
- Water quality

#### A set of indicators proposed

- √ Soil erosion in medium- or higherosion hazard zones
- ✓ Non-renewable energy consumption
- √ Ammonia emissions (air quality)
- ✓ Risks of nitrate leaching (water quality)

#### **Biodiversity**

- Aerial biodiversity (cultivated or uncultivated areas)
- Underground Biodiversity

#### impacts ✓ For the producer

Socio-economic and societal

- For the territory
- √ For society



#### A set of indicators combined

if the stakeholder wants to follow biodiversity



✓ To highlight additional services provided by the climate projects







### **Critical points**



Methods complementarity + extension of agri scope

Additionnality

Small & variable amount of carbon credits / hectare Measurement : operational tools + Farm scope/level diagnosis

#### Scientific robustness / acceptability / confidence:

- The most up-to-date and precise soil carbon storage model; can be extended to other countries
- Combined measurement of GHG Emissions + Carbon storage



### **Carbon farming / markets**



**Crop method** 

- Result based carbon approach
- Targeting voluntary carbon markets
- Additionnal revenues from private market beyond public subsidies = additional to the CAP support
- A broad consortium gathered with among the best specialists working on SOC storage, GHG emissions and cobenefits and stakeholders
- The most up-to-date and reliable references used
- The references and the models are adapted to the contexts (field crops, France but possible for other countries)
- The projects will be made up with farmers, fitting for their own farms

Public regulatory market expansion : aviation mandate ?