Soil Carbon Sequestration and Sustainable Development of Agricultural under Climate Change in Taiwan

Chi-Ling Chen Ya-Hui Shih Ming-Chieh Lin Jheng-Hong Hu

Agricultural Chemistry Division Taiwan Agricultural Research Institution (TARI) Council of Agriculture (COA), Taiwan, R.O.C.

Taiwan Agricultural Research Institute

http://www.tari.gov.tw/

Working group

Department of International Affairs ,COA (J. Chen)

Taoyuan District Agricultural Research and Extension Station, COA (A. Li)

Environmental Protection Administration, Executive Yuan (J. Yeh)

Agricultural and Food Agency, COA (Z. Huang)

Taiwan Agricultural Research Institute, COA (C. Chen)

Taiwan Forest Research Institute (C. Chiou)

THE RESERVENCE

Taiwan Livestock Research Institute (S. Li)

Taichung District **A**gricultural **Research and Extension S**tation, **COA** (H. Chen)

Tainan District Agricultural Research and Extension Station, COA (W. Jiang)

Miaoli District Agricultural Research and Extension Station, COA (Z. Tsai)

Kaohsiung District Agricultural Research and Extension Station, COA (Y. Lin)

Hualian District Agricultural Research and Extension Station, COA (L. Ni)

Taitung District **A**gricultural **Research and Extension Station, COA** (J. Zhang)

Taiwan's Participation

- Taiwan Agricultural Research Institute (TARI) is representative of Taiwan, R.O.C., to join the "4‰ Initiative" since November 14, 2016, and aims to achieve the goal of increasing 4‰ of SOC every year.
- Ministry of Foreign Affairs is representative of Taiwan to participate in the governance of the "4‰ Initiative association" in Nov. 17, 2016, at COP22 in Marrakech.

DECLARATION OF INTENTION OF SUPPORT FOR THE

Practices and Action plan in Taiwan

4‰ Initiative- Objectives of four pillars -	Taiwan - Practices and Action plans -
Pillar 1. Assessing the carbon sequestration potential	- Estimate Taiwan SOC and the carbon sequestration potential.
Pillar 2. Designing carbon sequestration strategies and co-benefits	- Assesse possible strategies for soil carbon sequestration and co-benefits under various cropping systems.
Pillar 3. Identifying and creating policies for adoption of 4 per 1000 practices	- Policies and financial support by government
Pillar 4. MRV soil carbon sequestration	Under study

Taiwan SOC (Soil Organic Carbon)

90 二 公里 20280

	Land	SOC (10³ Mg)
	Farmland	77,000 ¹
	Forest	160,000 ²
	Total	237,000
S	6 OM(%) <1%	(0-100cm)
	1-2%	
	2-3%	
	3-5%	
	>5%	Source: 1:Jien, <i>et al.</i> , 20 2:Tsai, <i>et al.</i> , 20
	-5-	http://www.tari.go

Soil Organic Matter Scoring

(Cornell Soil Health Assessment Training Manual, 2009)

🕑 Taiwan Agricultural Research Institute

SOC Decomposition on Study Sites in Taiwan(TW) and Japan(JP)

Taiwan Agricultural Research Institute

SOC Accumulations on Study Sites in Taiwan(TW) and Japan(JP)

Limits and feasability: practices

Integrated soil fertility management

Water management

Annual 4 per 1000 increase locally attainable Great variability of C storage rates (climate, soil..) Limits : biomass availability, nutrients, water, soil...

Organic fertilization

Rangeland management

1.Livestock Manure application in farmland

Swine Manure application in farmland

Duration of application to reach the environmental monitoring criteria for heavy metals accumulation in soil

12

2. Organic Farming: Challenges

- Low profit during the transition period: -20~50%
- Certification: the standards are restricted on heavy metal contents and organic materials
- Polluted Circumstances: next to conventional farms and polluted by the residual pesticides.
- Pest and insect damage

zicldXd6bmHDwoUCkrZVB5SkxD96L_B4OXc_O6kcDtgGl1fA

Cost of certification: higher cost on production and extra cost on environmental monitoring (US\$800~1000).

Technology for Rapid Composting

- Enhance the humification process
- Reduce the GHGs and odor emission and mass loss during composting

* > 10 milliom Mg organic waste produced per year need to be reused

3.Orchard Grass Cultivation: Opportunities

- Inhibit weed growth
- Control the damages of insect and pest
- Improve the soil and water conservation
 - preserve the soil nutrients and organic carbon content
 - Improve the physical and chemical properties of soil
 - Increase the soil drainage and porosity
- Environmental conservation
- Increase biodiversity

http://www.kskk.org.tw/satoyama/wpcontent/uploads/2013/12/IMG_1908-350x233.jpg

http://www.nafertino.com.tw/sites/default/files/technology/121 06818_1057789220944661_8568466494234955889_n.jpg

3. Orchard Grass Cultivation: case study

- Kaohsiung District ARES, wax apple orchards
- Wedelia chinensis and Alternanthera sessilis

The Influence of Grass Cultivation on Soil Organic Matter

Soil organic matter increase ~1% in 9 months.

4. Green manure crops cultivation

4. Green manure crops cultivation

NoF : no fertilizer	IF: Inorganic fertilizer
GM: green manure	OF : organic fertilizer
obs: observed data	est: estimated data by model

5. Afforestation in plain areas

6.Carbon Sequestration of Biochar and the Carbon Cycle in the Nature

行政院農業委員會農業試驗所

Assessment of carbon sequestration by applying Biochar

- > Most of Biochar is highly alkaline
- Strong acid soil (pH<5.5): ~ 300,000 ha (Tan et al., 2005)

> 2% biochar application :

It tends to be beneficial on production by applying 2 % biochar on acid soils.

30% of applied biochar will be decomposed after 100 years.

- Potential C sequestration on top soil: ~3.9 million tons
 - → about 14.3 million tons of CO₂ equivalent.

Taiwan's potential SOC sequestration in farmland

Prac	tices	Increasing SOC in 25-yr (%)	Area(10 ³ ha)	SOC (10 ³ Mg)
	Swine	0.2	120	480
Manure Reuse	Poultry	0.4	100	800
	Cattle	0.2	15	160
Green Manure		0.1	400	800
Organic	Farming	0.4	40	320
Biochar		0.7	300	3,900
Orchard Grass Cultivation		0.5	180	1,800
Afforestation in plain areas		0.4	18	144

Total = 336 x 10³Mg/yr

4.4 ‰ of Agro-SOC 1.4 ‰ of (Agro+Forest)-SOC

Current practices in farmland

Prac	tices	Increasing SOC (%/yr)	Area(10 ³ ha)	SOC (10 ³ Mg)
	Swine	0.008	1	0.16
Manure Reuse	Poultry	0.016	100	32
	Cattle	0.008	1	0.16
Green Manure		0.004	200	16
Organic	Farming	0.016	10	3.2
Bio	char	0.028	0.5	0.28
Orchar Cultiv	d Grass /ation	0.02	10	4
Affore in plai	station n areas	0.0175	18	6.3

Total = 62x 10³Mg/yr

0.8 % of Agro-SOC 0.3 % of (Agro+Forest)-SOC

Policies and financial supports from governments

- Promote and financial support for manure application in farmland (\$3 million USD)
- Subsidize the organic fertilizer for organic farming (\$1,000
 USD/ha)
- Provide the seeds with subsidy to cultivate green manure (\$500 USD/ha)
- Promote the grass cultivation on orchard
- Financial support for the research on biochar applications in farmland (\$2 million USD)

Action plans in the future

- Reduce the content of Cu and Zn of feeding to reduce their accumulation in soil for the reuse of livestock.
- Estimate precisely the rate of soil carbon sequestration of various strategies by long-term experiments.
- Establish the feedstock collection system and quality classification of biochar, and manage the biochar applications.
- Develop the methods of monitoring, reporting and verification (MRV) of national SOC sequestration.
- Promote the new technology and strategies for SOC sequestration.

THERE IS A LONG WAY TO GO !

THANK YOU FOR YOUR ATTENTIONS

https://www.youtube.com/watch?v=AY9YVwJZDvw