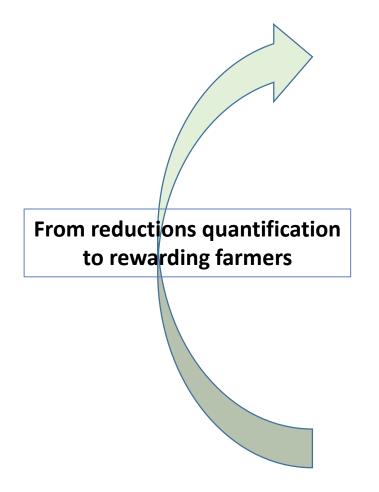


CARBON AGRI, a result-based carbon farming scheme in livestock

Jean Baptiste Dollé

Institut de l'Elevage - French Livestock Institute



71st Annual Meeting of European Federation of Animal Science

CARBON AGRI: A result based methodology

Paying farmers for carbon reductions

Verifying and certifying the carbon reduction

Defining baseline 1st Audit

Results based

mechanism

CAP'ZER

r√ validé

Quantifying CO₂ reductions 2nd Audit

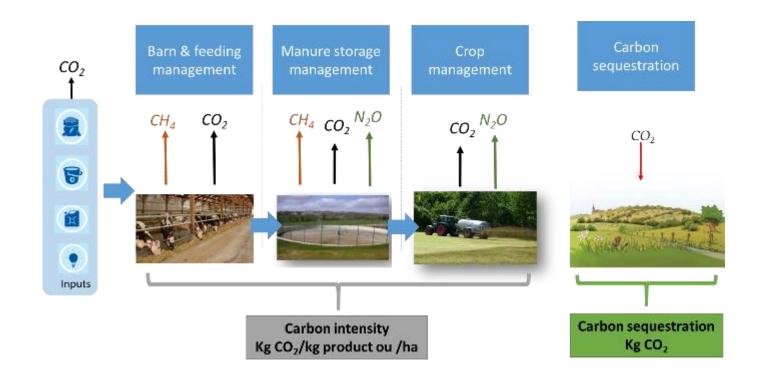
Building up mitigation action plan

Applying mitigation measures

5 years duration

From the audit to the CO₂ reductions quantification

Audit for making the reference/baseline



A MULTICRITERIA ANALYSIS TO EVALUATE SUSTAINABILITY

Methodology: In accordance with main guidelines

Building up a mitigation action plan among 40 mitigations practices

GHG emissions

Carbon sequestration

Inputs

Pasture management, Concentrates and fertilizers, Legumes, Crops rotation

Fuel and electricity

No-till cultivation, Power and equipment, Working organization

Crops management & fertilization

Legume fodder crops,
Optimization of fertilizers uses

Herd management

Increasing productivity
Reducing number of unproductive
animals

Feed

Feed efficiency, Forage quality and yield

Manure management

Time spent in shed vs pasture, Biogas production

Avoid bare soil

Agroforestry

Grassland management

Main mitigation practices applied

- Mitigation practices must be additional
- Respecting organic nitrogen pressure of the EU nitrates directive
- Preserving carbon storage

Landscapes & crops

Hedges&agroforestry – pasture and legumes— Fertilizer use-Manure and nitrogen spreadingcover crops

Feeding

Forage quality, pasture and concentrates, protein autonomy.

Energy and manure

Energy consumption, biogaz, slurry cover.

Herd management

Animal health, shed, heifers rearing

Implementation cost core tons core

Quantifying CO₂ reductions

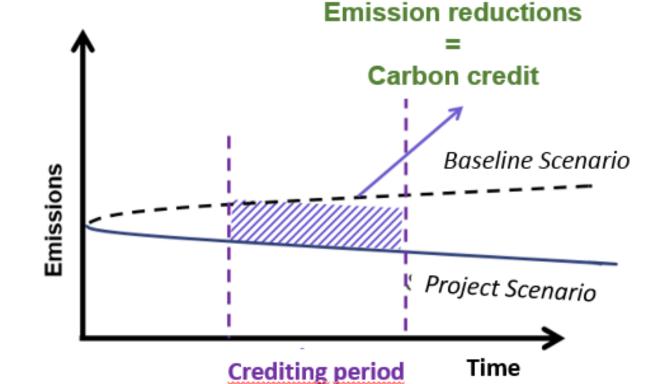
Baseline GHG emissions and carbon sequestration		After 5 years GHG emissions and carbon sequestration		1
Milk carbon footprint x milk production	-	Milk carbon footprint x milk production	GHG gains in dairy	CARBON AGRI methodology Carbon reductions farm
			+	
Beef carbon footprint x beef production	-	Beef carbon footprint x beef production	GHG gains in beef	
Crops carbon footprint x crop area	-	Crops carbon footprint x crop area	= GHG gains in crops	
Carbon sequestration x area	-	Carbon sequestration x area	C sequestration gains	

Monitoring the environmental co-benefits

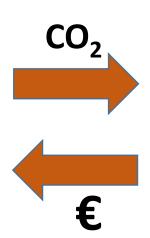
Indicators	Units	
Increasing contribution to biodiversity	ha equivalent of biodiversity / ha	Conservation of biodiversity
Reducing ammonia emissions (air quality)	kg NH ₃ / an	Air q
Reducing nitrogen balance (water quality)	Kg N / ha / an	Water quality (eutrophication)
Producing renewable energy	MJ / an	A End produc
Reducing soya bean consumption	Kg/an	Deforestation
Increasing catch crops area	На	fe
••••		

nergy ction

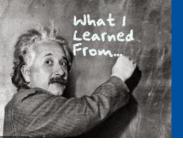
Carbon reductions Verification and Certification


External auditor

Result based payment



Average reduction of carbon intensity: 14 %


After 5 years project :

400 tons of carbon avoided

Result based carbon farming schemes

- An innovative mechanism
 - For quantifying and certifying GHG reductions in agriculture (Robust MRV system is essential for the results based approach)
 - For developing a transparency accounting and communication
 - To lever barriers in applying mitigation practices
 - To support farmers in reducing GHG emissions and increasing carbon sequestration
 - To mobilize innovative funds for local climate actions

A mechanism for boosting low carbon initiatives and moving to net zero carbon

Thanks for your attention

Jean Baptiste DOLLE

Jean-baptiste.dolle@idele.fr

French Livestock Institute - IDELE

Paris

