

Global game-changer: an Australian company that offers it all:

Reduces & Mitigates GHG Emissions

Increases Soil Carbon

Increases Food Security

Increases Farmer Returns

(Part A)

(Part A)

(Part B)

(Part B)

Agripower Australia Ltd would like to introduce Agrisilica®- a powerful opportunity to support Climate Smart Agriculture. It is the most significant change to fertilisers and fertilizer management in 90 years.

The following is only a brief introduction to the extraordinary benefits that Agrisilica® that offer the future of Climate Smart Agriculture (CSA) in the 21st century.

Part A:

Reduces & Mitigates

GHG Emissions and

Increases Soil Carbon

Agriculture: largest contributor of *non-CO*₂ GHG's at 56%.
How about an agri-product that 1. reduces emissions

- 2. boost soil carbon
- 3. increases yield
- 4. Increases profit?

¹ FAO; Smith, P. et al. Chapter 11 - Agriculture, forestry and other land use (AFOLU) In Climate Change 2014: Mitigation of Climate Change, PCCWorking Group III Contribution to AR5 (Cambridge University Press, 2014)

Plant Available Silicon (PAS)

Plant Available Silicon (PAS), basis of Agripower's revolutionary product Agrisilica®, is derived from amorphous silica. There are essentially, 2 types of Silicon:

- Crystalline (has structure)
- Amorphous (no structure)
- 1. PASis the key to unlocking the benefits of silicon to agriculture.
- 2 PAS, naturally derived, is safe for humans, animals and critically, the environment.

The science around PASreveals a number of extraordinary agri-benefits, both direct and indirect.

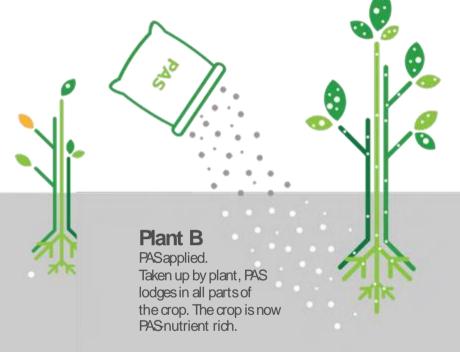
Agriculture's holy grail.

"If we treat soil carbon as a renewable source, we change the dynamics"

Thomas J Goreau
Biogeochemist and expert
on carbon and nitrogen cycles

CO₂ & Soil Carbon.

Remember school science and photosynthesis, the way plants grow and thrive by absorbing CO_2 from the atmosphere and exude clean Oxygen, O_2 ?


- CO₂ is considered a greenhouse gas and a major contributor to climate change.
- 133 billion tons of carbon have been lost from the top 2 meters of world's soil through agriculture¹.
- 3. Having more crops take in more CO₂, exuding more clean Oxygen is a good thing, yes?
- 4. So if O_2 has been absorbed by plants and only O_2 exuded, where has the carbon, C_2 gone?
- 5. Into the soil. It's been sequestered.

In other words we have renewed soil carbon. How...?

1. Sanderman, J. et al. (2017) Soil carbon debt of 12,000 years of human land use, Proceedings of the National Academy of Sciences

Agrisilica® creates Soil Carbon & Reduces CO₂

Silicon Phytoliths

PAS- absorbed by crops during lifetime, become rigid silicon forms called phytoliths. Phytoliths capture and store carbon (C).

Plant B

Plants and crops return carbon to the soil as roots and vegetative matter.

Plant A

Plant A

Relies only on what PASmay

be naturally available in soil.

Sand is crystalline silicon.

It does not provide PAS.

Most soils contain low levels of PAS Crops return Carbon to the soil through roots and recycling of vegetative matter, however there is often a net loss of soil carbon and more Carbon is exported off farm as produce and losses from soil erosion leading to:

Soil carbon being reduced.

Where has the Cgone?

Plant B

PASboosts PHOTOSYNTHESIS meaning:

- More O_2 is absorbed: GHG reduction
- Plant mass is greater: more CO_2 absorbed
- More, dean O_2 is released.

Plant B

The more PASa crop takes up the more Cthe crop sequesters. It stores this Cin PASPhytoliths which can store Cfor thousands of years. The more PASa plant is given = more plant mass = more stored Cgoes back into the soil = soil carbon.

Soil carbon is created.

 N_2O , CH_4 and Rice. Agriculture's big GHG challenges. CH_4 is 84x more potent than CO_2 N_2O is 300x more potent than CO_2 Agriculture accounts for 80% of global N₂O emissions mainly from fertilizer application

McKinsey & Co, Agriculture and Climate Change, 2020

50%+ of applied Nitrogen lost via leaching, animal waste and run-off

The Conversation Dec 5, 2016

Agriculture is the largest contributor of non-CO₂ GHG's at 56%

Smith, P. et al. Chapter 11 - Agriculture, forestry and other land use (AFOLU) In Climate Change 2014: Mitigation of Climate Change, PCC Working Group III Contribution to AR5 (Cambridge University Press, 2014).

CH₄ from global rice production accounts for ~50% of crop GHG's

Kritee Kritee et al, PNAS September 25, 2018 115 (39) 9720-9725; first published September 10, 2018

N₂O – Nitrous Oxide CH₄ – Methane CO₂ – Carbon Dioxide

"Up to 90% of climate impact from an individual rice farm in the Indian subcontinent can be mitigated through co-management of nitrogen fertilizers... " (Kritee et al)

 N_2O annual global emissions from rice farms under intense forms of intermittent flooding could be ... equivalent to annual O_2 emissions from about 200 coal power plants. Environmental Defense Fund, NY 2019

N₂O together with estimates of CH₄ annual emissions could see net climate impact from global rice production equivalent to 600 medium sized coal power plants (~1,500-1,930 MMT CO₂-e100). Environmental Defense Fund, NY2019

20 years of rice production's GWP* could equal 1,200 coal plant emissions

Environmental Defense Fund, NY2019
* Global warming potential

The application of PASto soil can reduce greenhouse gas emissions and reduce the impact of global climate change on agriculture.¹

Scientific trials confirm

- 1. The application of PAS reduces N₂O emissions.¹
- 2 PASin fertiliser management systems provides more complete denitrification process¹
- Addition of a PASfertilizer decreased N₂O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively..?
- 4. PAS fertilisation during rice growth may serve as an effective approach to decreasing N₂O emissions.²

1 Wiodarczyk I, Balakhnina I, Matichenkov V, Brzezinska M, Nosalewicz M, Szanip P, Fomina I. Effect of silicon on barley growth and N₂O emission under flooding. Sci Total Environ. 2019 Oct 1;685:1-9. doi:
10.1016/j.sci totenv.2019.05.410. Epub 2019 May 29. PMID: 31170590.
2 Song, Alin & Fan, Fenliang & Yin, Chang & Wen, Shilin & Zhang, Yalei & Fan, Xiaoping & Liang, Yongchao. (2017).
The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil. Biology and Fertility of Soils. 1-12. 10.1007/s00374-017-1206-0.

Agrisilica®has delivered in every trial. PAS increases grower profitability, increases crop resilience, increases yield and crop quality, and reduces emissions.

Rice:

- Reduced combined global warming potential (GWP) of CH₄ and N₂O = net effect reduction of GHG emissions
- Increased nitrogen (N) fixation = reduced leaching and N₂O emissions
- Promotes ammonium assimilation = reduced N₂O emissions

Barley:

- Increased denitrification process = reduced N₂O emissions
- Improved availability and efficiency of silicon as nutrient = major reductions in N₂O emissions.

Sugarcane:

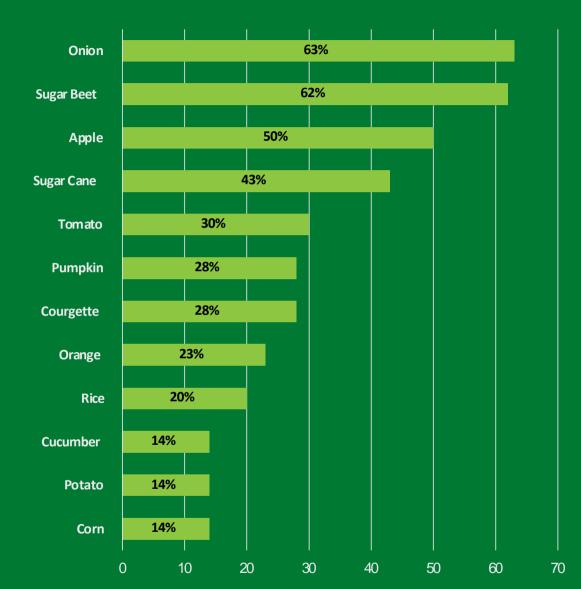
- Increased photosynthesis which;
- Reduces transpiration, which increases nutrient uptake which;
- Increases phosphate and potassium uptake by 40-70% and 20% respectively, all of which combine to...

Reduce N₂O losses by as much as 40%

Nitrogen loss can cost farmers up to 25% annual income The Conversation Dec 5, 2016 PAS reduces crop N₂O emissions; fixates N₂O which reduces emissions; & enables more N₂ uptake by crops.

Part B:

Increases Food Security by

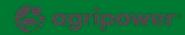

Increasing Yield, Reducing

Crop Stress Losses &

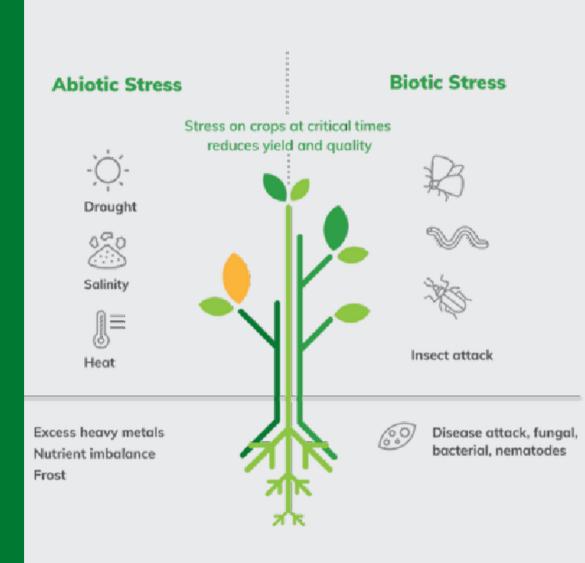
Improves Food Safety.

Agrisilica® Proven to increase yield & quality

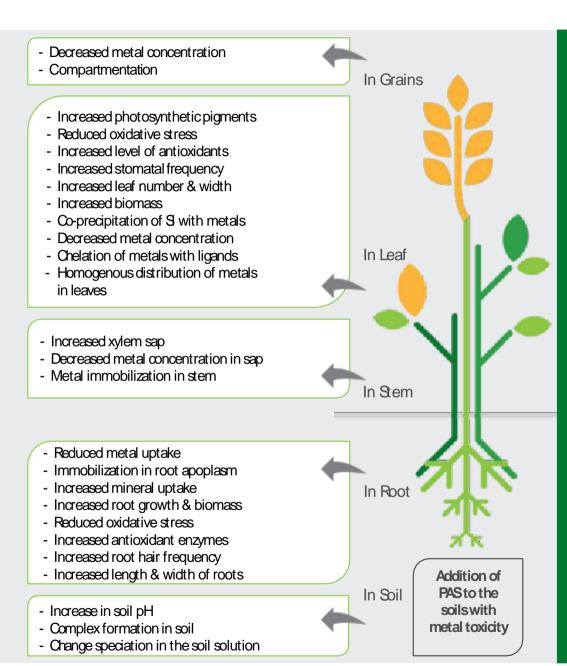
- 1. Reduces under-sizing in crops
- 2. Increases crop weight
- Disease incidence lowered
- 4. More premium quality crops
- 5. Longer crop shelf life
- 6. Increased nutritional value
- 7. Organic agriculture use approved
- 8. Versatile application range: broadacre, tree crops, hydroponic, nurseries, viticulture, turf production & remediation etc.



PASis required in macro quantities similar to NPK for optimum crop results. Crop health (growth, resilience etc) will be determined by the nutrient or resource in least supply, ie: crop yield and quality will be diminished if any nutrient is reduced.


Agrisilica® returns benefits to growers many times over

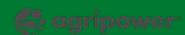
- 1. Increased yield & quality improved income
- 2 Reduced crop stress losses improved income
- 3. Improved crop quality/size improved income
- 4. Reduced water usage lower costs
- 5. Reduced pesticide usage lower costs
- 6. Increased safety to grower & consumer
- 7. Improved soil condition & fertility
- 8. Improved triple bottom line



PAS reduces crop stress—food security cannot sustain 51%-82% annual global losses

- Increases photosynthesis
- Increases cell strength making plant less palatable to insect attack
- Strengthens/improves vascular capacity (water & nutrient optimisation)
- Reduces uptake of and resistance to toxicities (salt, heavy metals)
- Prevents lodging
- Increases soil health, CEC, moisture retention (without waterlogging), optimises soil organic carbon & humic acid

PAS reduces Cd & As accumulation in crops by as much as 40%: reduces crop stress increases food safety


"The decreased concentrations of these toxic elements together with an increase in S in the edible parts are positive for human health." 1

¹Greger and Landberg (2015)

² Source of image: Adrees et al. (2015)

Cd-Cadmium

As – Arsenic

Agriculture in the 21st century faces 6 key challenges

- 1. GHG Emissions
- 2 Soil health
- 3. Food security
- 4. Toxicity
- 5. Crop stress
- 6. Ecosystems

Tofind out how Agripower addresses these 6 key challenges for agriculture in synergy with the UN's Sustainable Development Goals (SDG's) and the Food and Agriculture Organisation's (FAO) 3 Pillars of Climate Smart Agriculture, please ask for our brochure.

Few countries have achieved sustained economic growth without first developing their agriculture sector(OECD)

Agripower's Agrisilica® is related at a grass roots level to human food and beverage consumption.

(Septheror

The potential value of PAS in relation to crop and soil health has been championed by Agripower's founder and MD.

Peter Prentice who has been presenting extensively around the world educating government regulatory bodies, scientists, agronomists and growers on PAS and its significance to global agriculture.

Agrisilica®can directly & indirectly contribute to 12 of the UN's 17 SDG's

Proudly Australian Global

For further information on:

- Agrisilica®& Agriculture's 6 key challenges (CSA, UN SDG's)
- Agrisilica® Orop Results
- B2B Opportunities
- Or other enquiries, please contact:

Peter Prentice, Managing Director T+61 2 9251 8884 Epeterp@agripower.com.au

Agripower Australia Limited ABN 23 132 823 226 L13, 20 Bridge St, Sydney NSW 2000