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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Sahelian agroforestry parklands are 
crucial to improving food security of 
farmers. 

• We linked landscape diversity metrics 
with field monitoring and household 
surveys. 

• Food availability was positively associ
ated with tree density and species 
richness. 

• Food access was linked to landscape di
versity through an agroecological 
pathway. 

• Food security policies should also paid 
regard to agroforestry parklands 
diversity.  

A R T I C L E  I N F O   

Editor: Mark van Wijk 

A B S T R A C T   

CONTEXT: Fostering diversity within agricultural systems can substantially contribute to improved food security 
among smallholder farmers. Agroforestry parklands are diverse agricultural landscapes where trees can provide 
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an array of ecosystem services. Previous studies analyzing the agricultural landscape diversity-food security 
nexus in agroforestry parklands have only considered tree cover. 
OBJECTIVE: We propose an original empirical approach that combines the analysis of spatial data on agricultural 
landscape diversity with agricultural field monitoring and household surveys. These three sources of data were 
used to scrutinize the direct and indirect contributions of agricultural landscape diversity to food availability and 
food access. 
METHODS: Millet yield was used as a proxy for food availability, and household food access was approximated 
using the Household Food Insecurity Access Scale (HFIAS) indicator. Two contrasted agroforestry parklands of 
Central Senegal were chosen as case studies. Firstly, we used a Gradient Boosting Machine (GBM) algorithm to 
disentangle the relative contribution of landscape diversity, biophysical and crop management variables in 
explaining millet yield variability. Secondly, we investigated the pathways linking agricultural landscape di
versity to HFIAS using a Correlation Network Analysis (CNA). 
RESULTS AND CONCLUSIONS: The GBM model explained 77% and 84% of millet yield variability for the two 
parklands, respectively, with landscape diversity variables accounting for 53% and 47% of relative influence. 
Among the landscape diversity variables, tree species richness and tree density were the most important ones. 
Millet yield was positively associated with tree density in the Nioro site until a threshold of 5 trees/ha, and with 
tree species richness in the two sites. The CNA showed that greater tree cover and larger tree patches were 
moderately correlated with HFIAS. This suggests that tree species with large crown, as it the case for most fruit 
bearing tree species in the region, are the main species contributing directly to food access. Agricultural land
scape diversity contributed mainly indirectly to household food access through an “agroecological pathway”, i.e. 
by the provision of ecosystem services regulating and supporting crop production. 
SIGNIFICANCE: Using an integrated landscape approach relying on up-to-date remote sensing data and recent 
advances in data analysis methods, our study shows that tree species diversity matters as much as the amount of 
tree cover for the production of food, and it can contribute to improve food security. We bring a more nuanced 
picture of the contribution of agricultural landscape diversity to food security suggesting that land management 
policies supporting food security should consider both tree density and tree species diversity to optimize the co- 
benefits of trees for the different food security dimensions.   

1. Introduction 

There is a growing awareness that (agro)biodiversity is crucial to 
agricultural production and food security, with an urgent call for agro
ecological farming approaches that enhance ecosystem services pro
vided by biodiversity, such as biological pest control, pollination and 
nutrient cycling (FAO, 2019; IPBES, 2019). Important components of 
biodiversity in agricultural landscapes are compositional heterogeneity 
(i.e. number and proportions of different land use/cover types) and 
configurational heterogeneity (i.e. spatial arrangement of those land 
use/cover types) (Fahrig et al., 2011). Whilst agricultural intensification 
on large farms in developed countries has led to simplified landscape 
structures dominated by annual crops, smallholder farmers in devel
oping countries typically manage a diversity of crops, animals, trees and 
natural resources, creating complex and diverse agricultural landscapes 
that often comprise natural and semi-natural lands (Ricciardi et al., 
2021). 

Fostering biodiversity within agricultural landscapes can enhance 
farm productivity through the provision of ecosystem services, but can 
also directly contribute to better food security and income (Bommarco 
et al., 2013; Frison et al., 2011; Pilling et al., 2020), especially in the 
context of smallholder farmers in the tropics who typically face multiple 
challenges with securing household food security and nutrition (e.g. 
Muthayya et al., 2013) . For example, it has been demonstrated that 
integrated tree-crop-livestock systems on smallholder farms increase 
diversity of nutritious food products (Herrero et al., 2017). As well, 
conservation of wild vegetables in agricultural landscapes is seen as 
important as they are usually rich in micronutrients and can comple
ment staple food crops (Bvenura and Afolayan, 2015; Mavengahama 
et al., 2013). Agricultural landscape diversity can also support house
hold food security through income diversification by e.g. the sale of tree 
products (Alobo Loison, 2015; Sibhatu and Qaim, 2018; Waha et al., 
2018). Fruits, fodder and fuelwood from trees or shrubs can be sold on 
markets and can represent a significant proportion of household income 
for smallholder farmers (Miller et al., 2017), particularly for poor 
households (Koffi et al., 2020). This income can then be used to purchase 
food items on markets, which is an adaptive strategy during food 
shortage periods (Koffi et al., 2017). Moreover, trees can improve food 

security through the provision of fuelwood (wood and charcoal) as it is 
the primary source of energy used by rural households for cooking 
(Adkins et al., 2012). 

Agroforestry systems (Nair, 1993) are a tangible example of a diverse 
agricultural landscape. A specific case of agroforestry systems are the 
“parklands” in the Sahel, where farmers have preserved indigenous trees 
over the past centuries, and introduced exotic trees in their fields in 
relation to the large spectrum of ecological, economic and cultural 
services they provide (Miller et al., 2017; Reed et al., 2017; Sinare and 
Gordon, 2015). This has resulted in diverse agricultural landscapes 
(Lykke et al., 2004; Sambou et al., 2017), where trees have an important 
and direct role in nutrition as they produce fruits, nuts and leaves that 
can be consumed by humans. These food items, e.g. baobab (Adansonia 
digitata) leaves, or jujube (Ziziphus mauritania) fruit pulp, are additional 
sources of carbohydrates and proteins in the diets of the local population 
(Chivandi et al., 2015). 

The underlying processes and effects of agricultural landscape di
versity on food security are, however, complex. The spatial configura
tion of land use patches drives many processes occurring in agricultural 
systems, e.g., pest infestation (Kebede et al., 2019; Sow et al., 2020) and 
crop pollination through bee abundance (Otieno et al., 2015). For 
instance, it has been shown that a high proportion of semi-natural areas 
in the agricultural landscapes of the Senegalese Groundnut Basin can 
significantly contribute to the control of the millet head miner moth 
(Heliocheilus albipunctell) by natural enemies (Soti et al., 2019). The 
spatial composition of landscape elements is determinant as well, but 
often implies trade-offs between ecosystem services. For example, a 
density of 10 trees/ha is considered optimal to support crop productivity 
in F.albida parklands (Roupsard et al., 2020). In agroforestry systems, 
trees can boost rural development (i.e.,. through increased incomes, 
Bado et al., 2021) while at the same time trade-offs occur between crop 
productivity and tree growth and products (Tschora and Cherubini, 
2020). While trees can often increase crop yields, particularly in the case 
of nitrogen-fixing trees (e.g. Kho et al., 2001), they can also lead to yield 
penalties as a result of competition for light, water or nutrients. For 
instance, it has been observed that shading from trees such as the African 
locust bean (Parkia biglobosa), decreases millet yield in parklands of 
Burkina Faso (Sanou et al., 2012). These trade-offs can be minimized by 
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relying on a mix of tree species with contrasting functional diversity. In 
general, Sahelian parklands are made up of a diversity of tree species, 
and their spatial arrangement can vary over short distances (Bayala 
et al., 2015). Hence, we can assume that in parklands, the direction and 
magnitude of the tree effects on food security is tightly linked to agri
cultural landscape composition and configuration. 

Previous studies addressing the contribution of agroforestry to food 
security often relied on a simplified conceptualization of agricultural 
landscape diversity. Studies addressing the effects of trees on crop pro
ductivity mainly dealt with one tree species at a time (Bado et al., 2021; 
Ndoli et al., 2017; Roupsard et al., 2020; Sanou et al., 2012), whilst 
seldom considering tree diversity in the surrounding landscape of the 
field, and often only considering tree density or tree cover (Bado et al., 
2021; Duriaux Chavarría et al., 2018; Hadgu et al., 2009; Leroux et al., 
2020; Yang et al., 2020). However, it can be assumed that combinations 
of tree species lead to different effects on crop productivity and hence on 
food availability. Similarly, when dealing with the contribution of 
agricultural landscape diversity to household food security, most studies 
focused on tree cover configuration (i.e., total tree cover, tree density 
and number of tree patches) and did not account for tree species richness 
or agricultural landscape diversity per se (i.e. in terms of land use types) 
(Baudron et al., 2019; Ickowitz et al., 2014; Nyberg et al., 2020; Ras
mussen et al., 2020; Rasmussen et al., 2019). In these previous studies, 
tree cover configuration was derived from (i) publicly available global 
datasets of tree cover (e.g. Rasmussen et al., 2019) or (ii) simple forest/ 
non forest maps derived from satellite images with a moderate spatial 
resolution (e.g. Baudron et al., 2019). Such products are, however, not 
reliable to account for the fine-grained landscape diversity of complex 
parklands, such as in the Sahel. The use of publicly available, high- 
spatial resolution satellite images such as the Sentinel-2 constellation 
has allowed for improvement in land use mapping in complex agricul
tural landscapes (Gbodjo et al., 2020). 

The objective of this study is to assess the contribution of agricultural 
landscape diversity to food security of smallholder farmers in agrofor
estry parklands in Senegal. Specifically, we adopted an empirical 
approach to answer the following questions: (1) do diverse agricultural 
landscapes increase crop yields (in this case, millet), and (2) what are 
the direct and indirect links between agricultural landscape diversity 
and household food access? To answer these questions, we produced a 
fine-grained characterization of the agricultural landscape using up-to- 
date satellite images in combination with field monitoring and house
hold surveys, and applied Gradient Boosting Machine and Correlation 
Network Analysis, respectively. 

2. Material and methods 

2.1. Study area 

The study was conducted in 2018 in the Groundnut Basin in Central 
Senegal (Fig. 1) where groundnut has been the main cash crop since 
colonial times. The first study site, Niakhar (14◦54 N, 16◦44 W) is in the 
northern part of the Groundnut Basin, while the second site, Nioro 
(13◦75 N, 15◦80 W) is in the southern part at the border with Gambia 
(Fig. 1a). Each site covers about 450-km2. The climate in Niakhar is 
sahelo-sudanian with annual rainfall ranging from 400 to 650 mm, 
whilst Nioro has a sudanian climate with annual rainfall between 600 
and 800 mm. The rainy season in both sites lasts from July to October, 
with August and September being the wettest months, whilst the dry 
season occurs from November to June. Tree cover in the region is greatly 
determined by annual rainfall (Brandt et al., 2015), and by farmers’ 
selection and management of trees (Sambou et al., 2017). The sites host 
the two dominant types of parklands of the region. Niakhar is dominated 
by Faidherbia albida (38% of the trees), a leguminous nitrogen-fixing 
species that improves crop yields through increased water and 
nutrient availability (Sileshi, 2016) and better microclimate conditions 
(Sida et al., 2018). Pods and leaves of F. albida are also used as livestock 

feed. Parklands in Niakhar are diverse with more than 60 species in 
total, A. digitata, Balanites aegyptiaca and Borassus aethiopum being the 
most important ones apart from F. albida (Fig. 1f). Nioro has less diverse 
parklands with about 50 species in total, largely dominated by Cordyla 
pinnata (71% of the trees) followed by Azadirachta indica. C. pinnata is an 
important species for the local population, because it provides con
struction woods, fodder for livestock, medicinal plant parts and seedpod 
pulp of high nutritional value (Lykke, 2000; Sinare and Gordon, 2015). 
However, C. pinnata is overexploited (legal and illegal logging) and 
considered as a species in decline in the region (Lykke, 2000). 

The population density of the Niakhar and Nioro sites was estimated 
at 122 hab/km2 (standard deviation: 52 hab/km2) and 187 hab/km2 

(standard deviation: 82 hab/km2), respectively (https://www.worl 
dpop.org/). In both sites, rural people practice small-scale agriculture 
to secure their livelihoods, with low use of external inputs. Pearl millet 
(Pennisetum glaucum (L.) R. Br.) (cultivated on 50% and 33% of the total 
area in 2018 in Niakhar and Nioro, respectively) and groundnut (Arachis 
hypogaea L.) (on 30% and 40% of the total area in 2018 in Niakhar and 
Nioro, respectively) are the main cultivated food crops (Fig. 1b and 
Fig. 1d). Pearl millet and groundnut are mainly cultivated in a biennial 
rotation. Pearl millet contributes to food security and livelihood as it 
provides both food and income. In both sites, more than 65% of the rural 
households consume pearl millet twice a day, five days of the week. In 
particular, millet is the cornerstone of food security for rural population 
in both sites during the lean season as its consumption increases by more 
than 50% during this period (IPAR, 2017). Other crops are sorghum 
(Sorghum bicolor (L.) Moench), cowpea (Vigna unguiculata L.), roselle 
(Hibiscus sabdariffa L.) and maize (Zea mays L.). Due to demographic 
pressure and the resulting expansion of the cultivated area, natural 
woodlands have strongly decreased over the past decades (Brandt et al., 
2016; Herrmann et al., 2013). Hence, natural vegetation is mainly 
present in the form of scattered trees in cropped fields (i.e. parklands), 
which account for 6% of the total area in both sites (“Tree” category in 
Fig. 1b and Fig. 1d). 

2.2. General overview of the approach 

Fig. 2 gives an overview of the approach of our study. We empirically 
investigated the different pathways connecting agricultural landscape 
diversity to household food security. A first analysis was conducted to 
investigate the impact of agricultural landscape diversity on millet yield 
(as part of food availability; Fig. 2b) and unravel the contribution of 
biophysical and crop management variables (see Table 1) using a 
Gradient Boosting Machine algorithm (Leroux et al., 2020; see Section 
2.5.2) on a sample of 40 agricultural fields. In a second analysis, using 
cross-sectional data on 412 households, we explored the direct and in
direct relationships linking agricultural landscape diversity to house
hold food access (i.e. assessed with the Household Food Insecurity 
Access Scale, HFIAS) using a conceptual model adapted from Gergel 
et al. (2020) based on Correlation Network Analysis (see Fig. 2c). Below 
we describe in more detail the methods used for data collection (geo
spatial data, field monitoring and household surveys) and for the sta
tistical analyses and modelling. 

2.2.1. Indicators of food security: millet yield and Household Food 
Insecurity Access Scale (HFIAS) 

Food security at household level is complex and not easy to quantify 
since it encompasses food availability, food access, food utilization and 
food stability (FAO, 1983). Food availability means the physical avail
ability of food, focusing on the supply side and therefore includes all 
crop, livestock and tree foodstuff produced and/or collected on the farm. 
Food access refers to physical, social and economic access to available 
food and thus indicates the ability of a household to be in possession of 
sufficient resources to obtain appropriate foods for a nutritious diet. 
Food utilization, on the other hand, includes a wide range of factors, 
particularly the contribution of food consumption to the health and 
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nutritional status of the individuals of a household. Food stability is a 
cross-cutting dimension referring to the availability and access to food at 
all times. In this study, we focused on (i) food availability, using millet 
yield as a proxy, and (ii) food access, assessed with the Household Food 
Insecurity Access Scale (HFIAS) indicator. The food utilization dimen
sion was not evaluated in this study. 

It is acknowledged that the diversity of food crops produced and or 
bought contributes to household food security. However, to control the 
complexity of the studied systems, we selected a limited number of 
variables to determine the relationships between agricultural landscape 
diversity and food security. For crops, we decided to focus on millet. The 
choice of millet yield as a proxy for food availability was based on the 
fact that crop production accounts for a large part of food availability in 
the typical farming systems of the study sites (Ritzema et al., 2017), with 
millet being the main staple food crop (IPAR, 2017). A Household Food 
Insecurity Access Scale (HFIAS) categorical variable was used to mea
sure household food access. HFIAS has been widely used as a monitoring 
indicator of food security at household level (Jones et al., 2013). It relies 
on nine questions to capture the occurrence of a specific condition 

associated with the experience of food insecurity in a household during 
the previous 30-days (Coastes et al., 2007). 

2.2.2. Indicators of landscape and tree diversity 
Landscape diversity was assessed using the landscape Shannon and 

Simpson diversity indices calculated from a land use and land cover 
(LULC) map (Table 1, Ndao et al., 2021a). Both indices account for LULC 
richness (i.e. number of LULC classes) and LULC abundance (i.e. the 
number of pixels per LULC class), and are by definition sensitive to the 
level of detail of the land use classification system adopted. The Shannon 
index is sensitive to rare LULC classes while the Simpson index is sen
sitive to the dominant LULC classes (as it gives more weight to common 
LULC classes). However it has been shown that Simpson and Shannon 
indices tend to increase with the level of land use categorization (e.g. Liu 
et al., 2013; Peng et al., 2007). In this study we used a land cover-land 
use typology with a limited number of classes (11 classes) and hence the 
landscape diversity information provided by the Shannon and Simpson 
indices can be considered as the “base level” of landscape diversity we 
can expect for our study sites. Tree cover, number of tree patches (i.e. 

Fig. 1. Main characteristics of the two study sites. a) location of the Niakhar site (green square) and Nioro site (yellow square), b) and d) main land use in 2018 for 
Niakhar and Nioro respectively, c) and e) landscape classes for Niakhar and Nioro respectively (from Ndao et al., 2021) and f) tree species composition for each study 
site. A description of the landscape classes are provided in supplementary materials (Table S2). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 2. a) Representation of the field scale (food availability) and household scale (food access), and their corresponding spatial units used for the estimation of the 
agricultural landscape diversity variables b) Conceptual model used to explore the different relationships between agricultural landscape diversity and food 
availability (millet yield) using Gradient Boosting Machine analysis and c) Conceptual model used to explore the different relationships between agricultural 
landscape diversity and household food insecurity access (HFIAS) using Correlation Network Analysis. 
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contiguous pixels classified as tree in the LULC map) and mean size of 
tree patches (Table 1) were also derived from the LULC map and used as 
indicators of the potential amount of tree resources available to house
holds (e.g. Rasmussen et al., 2020; Rasmussen et al., 2019). Lastly, we 
also surveyed fields to quantify tree density, tree species richness, and 

the tree Shannon and Simpson indices (see Section 2.4 for details). 

2.2.3. Co-variables 
Further, a range of co-variables were included in the analysis to 

explain millet yield and HFIAS. For millet yield, these were biophysical 

Table 1 
List of variables collected to explain millet yield and household HFIAS.  

Food security variable to 
explain 

Unit of 
observation 

Explanatory variable Unit Number of 
observationsb 

Method for data 
aquisition 

Millet yield 

Millet field 
Landscape 
diversity Landscape Shannon index  70 

Analysis of geospatial 
data   

Landscape Simpson index  70 
Analysis of geospatial 
data   

Share of Faidherbia albida % 70 Field monitoring   
Tree density Trees/ha 70 Field monitoring   
Tree species richness Count 70 Field monitoring   
Tree Shannon index  70 Field monitoring   
Tree Simpson index  70 Field monitoring   

Tree cover % 70 
Analysis of geospatial 
datac   

Number of tree patches Count 70 
Analysis of geospatial 
datac   

Mean size of tree patches ha 70 
Analysis of geospatial 
datac  

Biophysical 
variables 

Soil type  70 Field monitoring   

Soil Organic Carbone g/kg 70 
Analysis of geospatial 
datac   

Soil Total Nitrogene ppm 70 
Analysis of geospatial 
datac   

Soil Total Phosphoruse ppm 70 
Analysis of geospatial 
datac  

Crop management Previous crop Categorical 70 Field monitoring   

Cattle penning 
Binary: yes = 1; no 
= 0 70 Field monitoring   

Cattle grazing 
Binary: yes = 1; no 
= 0 70 Field monitoring   

Residues kept on the plot 
Binary: yes = 1; no 
= 0 70 Field monitoring   

Is the field regularly fallowed 
Binary: yes = 1; no 
= 0 70 Field monitoring   

Association with leguminous 
crop 

Binary: yes = 1; no 
= 0 70 Field monitoring   

Field age Year 70 Field monitoring   
Distance from homestead Minutes 70 Field monitoring   
Amount of mineral nitrogen 
applied kgN/ha 70 Field monitoring   
Amount of mineral phosphorus 
applied kgP/ha 70 Field monitoring 

HFIASa 

Household 
Landscape 
diversity Landscape Shannon index  391 

Analysis of geospatial 
datad   

Landscape Simpson index  391 
Analysis of geospatial 
datad   

Tree density Trees/ha 391 Household survey   
Tree species richness Count 391 Household survey   

Number of tree patches Count 391 
Analysis of geospatial 
datad   

Mean size of tree patches ha 391 
Analysis of geospatial 
datad   

Tree cover % 391 
Analysis of geospatial 
datad  

Farming system Farm size Per Capita ha/capita 391 Household survey   
Millet production Per Capita kg/capita 391 Household survey  

Income Tree income 
Binary: yes = 1; no 
= 0 391 Household survey  

Energy Fuelwood use 
Binary: yes = 1; no 
= 0 391 Household survey  

Socio- 
demographic Size of household Capita 391 Household survey   

Proportion of men % 391 Household survey  

a HFIAS: 1 = severely food insecure, 2 = moderately food insecure, 3 = mildly food insecure, 4 = food secure. 
b Final sample size after data curation. 
c Extracted at landscape unit level. 
d Extracted within a 5-km radius of household location. 
e AfSoilGrids database (Hengl et al., 2017). 
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field-level variables (e.g. soil organic carbon, total soil nitrogen and 
phosphorous) and crop management variables (e.g. amount of mineral 
nitrogen applied) (see Table 1 for the full list). Total soil nitrogen and 
total soil phosphorous were extracted from the AfSoilGrids database 
(Hengl et al., 2017). For HFIAS, the co-variables were farming system 
variables (e.g. millet production per capita), farm income (e.g. the 
presence or absence of revenue from tree resources) and energy-related 
variables (e.g. the presence or absence of fuelwood use) (see Table 1). 
However, after visual screening of the variability of each co-variable, the 
tree income variable was removed from the analysis since most of 
households did not sell tree products suggesting that cash income 
coming from agricultural landscape diversity does not contribute to 
household food access at the two study sites. Indeed, tree species 
commonly used as cash crops in the Sahel, such as Parkia biglobosa and 
Vittelaria paradoxa, accounted for less than 1% of the trees in our study 
sites (Ndao et al., 2021a). 

2.3. Household surveys and field monitoring 

2.3.1. Village and household selection 
A weighted stratified strategy was designed for the field monitoring 

and the household surveys, based on a remote sensing approach taking 
into account landscape diversity (Ndao et al., 2018, 2021b). The Nia
khar and Nioro sites were first segmented into landscape units (Fig. 1). 
Each landscape unit was assumed to be homogeneous in terms of agro- 
environmental conditions, landscape composition and farming practices 
(Bellón et al., 2018). Landscape units were subsequently classified into 
four and five landscape classes in Niakhar and Nioro respectively (see 
Table S1 for their description). The landscape classes were defined based 
on remote sensing and unsupervised hierarchical clustering using a set 
of biophysical variables (plant productivity and its inter-annual changes, 
evapotranspiration, woody cover and soil texture), assuming that 
changes in the plant productivity are due to changes in environmental 
conditions and farming practices (see Ndao et al., 2021b). Based on this 
landscape classification, 19 and 18 villages were chosen in Niakhar and 
Nioro, respectively. The number of villages per landscape class was 
weighted by the proportion of the total area of the study site occupied by 
that landscape class (Fig. 1). For the study, 12 households per village 
were randomly selected within a households list provided by each 
village head, resulting in 228 and 216 households in Niakhar and Nioro 
for surveying, respectively. After cleaning of the database, 391 house
holds were finally kept in the analysis. 

2.3.2. Household surveys 
The heads of the selected households were interviewed between July 

and August 2018, at the start of the cropping season when food stocks 
from the last rainy season started to run out. The standardized ques
tionnaire addressed household composition and functioning, farm 
characteristics, parkland characteristics, tree use and included the nine 
generic occurrence questions used to construct the HFIAS indicator. The 
surveys were conducted with an Android Tablet and the Global Posi
tioning System (GPS) coordinates of each household were recorded with 
a Garmin GPS device (GSMAP®64). The variables collected in the 
household surveys are presented in Table 1. Household heads were 
asked to make an inventory of all trees he/she had on his/her fields, and 
tree density and species richness were determined for the total cropped 
land area of the farm. Millet production per capita was computed based 
on reported total millet production on the farm and household size. Tree 
income (i.e. whether households have sold tree products over the last 
year) was reported as a binary variable. 

Based on the answers to the nine occurrence questions related to the 
HFIAS indicator, households were categorized into four classes: 
severely, moderately, mildly food insecure and food secure (the rules of 
categorization are provided in Table S2). 

2.3.3. Field monitoring 
The field monitoring was conducted in 2018 on millet fields of five 

households (i.e. one field per household) among the 12 initially selected 
households per village in a random subset of eight villages per site, 
resulting in 40 millet fields per study site. Field boundaries and indi
vidual locations of tree species were recorded with a Garmin GPS device 
(GSMAP®64). Tree locations were adjusted by photointerpretation 
using Google Earth images (https://www.google.com/earth/index. 
html). Aboveground biomass of millet was harvested at crop maturity 
in three quadrats of 6-m2. Threshed grains were dried at 70◦ for 48-h, 
and weighed. Grain yield (kg/ha) was averaged across the three repli
cates per field (Table 1). Tree density, the proportion of Faidherbia 
albida, tree species richness (i.e. the number of different species) and 
Shannon and Simpson diversity indices (i.e. summary indices that also 
account for the number of individuals per species) considering the trees 
inside the monitored fields and in their adjacent fields were derived. The 
R package “vegan” was used to compute the Simpson and Shannon 
indices (Oksanen et al., 2019). Field age, distance from the homestead 
and cropping system information (e.g. previous crop, amount of nitro
gen and phosphorus applied with chemical fertilizer, manure applied) 
were recorded (Table 1). To calculate the total nitrogen and phosphorus 
inputs from organic and inorganic sources, manure was assumed to 
contain 0.93% nitrogen and 0.28% phosphorus (Tounkara et al., 2020). 
A 1.5% mineralization rate over the growing season was considered to 
estimate mineralized nitrogen and phosphorus from manure. A range of 
yes/no binary variables that may drive soil fertility levels were also 
collected (e.g. presence of a cattle pen in the field, occurrence of cattle 
grazing during dry season, retention of crop residues on the plot, 
occurrence of regular fallowing, association with leguminous crop). 

2.4. Analysis of geospatial data 

A land use and land cover (LULC) map was derived from Sentinel-2 
(10-m spatial resolution) and PlanetScope (3-m spatial resolution) im
ages using object-based image analysis (Blaschke et al., 2014) combined 
with Random Forest (Breiman, 2001) and implemented with the 
MORINGA processing chain developed by the Theia Scientific Expertise 
Centre for land cover (https://www.theia-land.fr/en/ceslist/land-c 
over-sec/). Ground truth data was collected in each site at the end of 
the cropping season in 2018 (Ndao et al., 2021b). The land use and land 
cover dataset is available at https://doi.org/10.18167/DVN1/P7OLAP. 
Sahelian parklands are highly heterogenous with small trees and shrubs. 
For this reason, a natural vegetation class (hereafter referred to as tree 
class) was added to the LULC map using a simple thresholding value of 
Normalized Difference Vegetation Index derived from a Pléiades image 
(0.5-m spatial resolution) taken at the end of the cropping season to 
discriminate natural vegetation (i.e. woody vegetation) from other land 
cover classes. Niakhar was classified into ten LULC classes and Nioro 
into eight classes. The classification produced LULC maps with 85% and 
84% overall accuracy for Niakhar and Nioro, respectively (Ndao et al., 
2021b). 

Landscape variables were derived from the LULC data, i.e. landscape 
Shannon and Simpson diversity indices, number and mean size of tree 
patches and tree cover (Table 1). For millet fields, landscape diversity 
variables (i.e. landscape Shannon and Simpson indices, number of tree 
patches, mean size of tree patches) were extracted from the landscape 
unit in which the field is located (Fig. 1c, Fig. 1e and Fig. 2a). On the 
other hand, at household-level, the landscape diversity variables (i.e. 
tree cover, landscape Shannon and Simpson indices, number of tree 
patches and mean size of tree patches) were computed for all the fields 
(regardless of landscape classes) inside a 5-km radius circle around the 
location of each household homestead (Fig. 2a). Farmers travel by foot 
or with carts, and we assumed that a radius of 5-km is a realistic distance 
for people to travel to the field for work or to collect tree resources (e.g. 
wood, leaves, fruits). 
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2.5. Statistical analysis 

2.5.1. Descriptive statistics 
Differences between the two parklands for the main field-level var

iables and household-level variables were assessed. A non-parametric 
unpaired two-sample Wilcoxon test was used to compare the medians 
of continuous variables. For categorical variables, counts were 
compared using a Chi-square test. Differences were considered signifi
cant for p-value ≤0.05. 

2.5.2. Gradient boosting machine method to investigate the link between 
agricultural landscape diversity and food availability (millet yield) 

A Gradient Boosting Machine (GBM) algorithm (Friedman, 2001) 
was used to disentangle the contribution of the field-level crop man
agement variables, biophysical variables and landscape variables 
(Table 1) in explaining millet yield variability (Leroux et al., 2020). GBM 
is a non-parametric machine learning approach that combines regres
sion trees and boosting. It handles different types of independent vari
ables and can fit complex non-linear relationships and interactions 
between independent variables (Elith et al., 2008). We assessed the 
relative contribution of each independent variable based on the GBM 
relative influence measure. Main parameters of the GBM model were set 
based on a grid search assessing the top-performing combination. Model 
performance was evaluated with a 5-fold cross validation. The partial 
dependence plot was used to analyze interaction between the predicted 
variable (millet yield in this study) and the independent variables. It 
allows visualizing the partial contribution of each independent variable, 
accounting for the average effect of the other variables (Friedman and 
Meulman, 2003). Partial dependence plots were built for the most 
contributive independent variables. To improve the visualization, a 
locally weighted smoothing was applied to the partial dependence with 
a smoothing parameter of 1. 

2.5.3. Correlation network analysis to investigate the links between 
agricultural landscape diversity and food access (HFIAS) 

Correlation-based network analysis (CNA) was used to investigate 
the links between HFIAS and agricultural landscape diversity, farming 
systems characteristics, income and energy variables. CNA is a data- 
mining tool for analyzing and visualizing functional relationships 
within large data sets. In these networks, associations are visualized by a 
graph of nodes and edges. The nodes represent variables and the edges 
between them the significant correlation coefficients (r). CNA is based 
on mathematically defined (dis)similarity measures that correlate 
different variables to each other, and the resulting correlation co
efficients reflect the magnitude of the co-linear relationship of the var
iables. Here, the pairwise correlation coefficients between HFIAS and 
landscape diversity, farming system characteristics and energy variables 
were computed (Table 1 and Fig. 2b). Continuous variables were tested 
for normality using the Shapiro-Wilk test. Variables not normally 
distributed were transformed using the bestNormalize R package that 
selects the best normalizing transformations on the basis of Pearson P 
test statistics for normality (Peterson and Cavanaugh, 2019). The 
Pearson correlation was applied for all paired variables, except for 
correlation involving HFIAS and tree species richness (ordinal vari
ables), for which Spearman’s rank correlation was used. Only significant 
correlations (p-value ≤0.05) were kept in the correlation-based network. 
CNA was conducted for each site individually, resulting in two networks. 

Except for the LULC classification, all geospatial processing, statis
tical analyses and graphical outputs were carried out using the R soft
ware version 3.6.3 (R Core Team, 2020). The full list of the R packages 
and the main functions used are given in Table S3. 

3. Results 

3.1. Characteristics of the two study sites 

Average household size was significantly greater in Niakhar than in 
Nioro (13.9 and 12.5 persons, respectively). Average land per capita was 
smaller in Niakhar than in Nioro (0.22 and 0.36 ha/capita, respectively) 
(Table 2). There was no significant difference in millet yield on a per 
hectare basis between the two sites. However, millet production per 
capita was significantly smaller in Niakhar compared with Nioro (246 kg 
±207 and 380 ± 329 kg/capita respectively), despite great variations 
across households. The proportion of food secure households as assessed 
through the HFIAS was greater in Niakhar (the most diverse agricultural 
landscape, see below) than in Nioro (Fig. 3). However, Niakhar had the 
largest proportion of households that were experiencing severe food 
insecurity. 

The two sites contrasted in terms of landscape diversity for all re
ported variables, except for the landscape Shannon diversity index, the 
latter indicating that the diversity of LULC classes was similar between 
the two sites (Table 2). The Niakhar parklands were, however, more 
dense and diverse than the Nioro parklands, as indicated by the greater 
tree density, larger relative number of F. albida trees (assessed through 
field survey monitoring), greater tree cover and tree species richness 
(assessed through geospatial analysis and household survey). On 
average, soil total nitrogen content of the millet fields was greater in 
Niakhar compared with Nioro, while soil total phosphorus was lower in 
Niakhar compared with Nioro. Overall, fields in Niakhar received lower 
amounts of mineral fertilizer than in Nioro. 

3.2. Agricultural landscape diversity and food availability (millet yield) 

Using a set of field-level crop management, landscape diversity and 
biophysical variables, the GBM model for Niakhar (Fig. 4a) and Nioro 
(Fig. 4b) explained, respectively, 77% (relative Root Mean Square Error, 
rRMSE = 20%) and 84% (rRMSE = 21%) of millet yield variability (p- 
value≤0.05). The main explanatory variables were landscape diversity 
variables, accounting for 53% and 47% of relative influence in Niakhar 
and Nioro, respectively. The explanatory landscape diversity variables 
were related to parkland configuration (i.e. tree species richness for 
Niakhar and tree density for Nioro). Besides, selected biophysical vari
ables (i.e., total soil nitrogen for Niakhar and total soil phosphorus for 
Nioro) had a relatively high influence on millet yield (30% and 24% in 
Niakhar and Nioro, respectively). On the other hand, crop management 
variables only marginally explained millet yield variability, accounting 
for 5% and 17% of relative influence in Niakhar and Nioro, respectively. 

Fig. 5 displays the partial dependence plot for tree density and tree 
species richness. Millet yield exhibited a linear positive relationship with 
tree density in Nioro when tree density was below 5 trees/ha, while no 
relationship was observed in Niakhar (Fig. 5a). Millet yield exhibited a 
linear positive relationship with tree species richness above two tree 
species in Niakhar while the relationship started to stagnate above two 
tree species in Nioro (Fig. 5b). 

3.3. Agricultural landscape diversity and food access (household food 
insecurity access scale) 

Results of the CNA are presented in Fig. 6a for the Niakhar site and 
Fig. 6b for the Nioro site. Only significant correlation coefficients with p- 
value below 0.05 are displayed. The corresponding correlation matrixes 
are presented in Table S4. 

3.3.1. Niakhar 

3.3.1.1. Direct links between landscape diversity and food access. HFIAS 
was significantly and positively correlated with the mean size of tree 
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patches (r = 0.25), that was, in turn, positively correlated with tree 
cover (r = 0.34) (Fig. 6a). This suggests that large tree patches and tree 
cover were associated with greater levels of food access. HFIAS was 
significantly and negatively correlated with tree density (r = − 0.23). 
Tree density, in turn, was significantly and positively correlated with 
tree species richness (r = 0.36). These correlations, although relatively 
weak, suggest that a high parkland tree density and diversity is associ
ated with lower levels of food access. Thus, household food security in 
Niakhar appears to be sustained by the Faidherbia albida parklands 
through large tree species but negatively linked to tree density. 

3.3.1.2. Indirect links between landscape diversity and food access. HFIAS 
was significantly and positively correlated with millet production per 
capita (r = 0.19), which indicates a higher food access with increasing 
millet production per capita. In line with the findings of the analysis 
conducted at field-level (see Section 3.2), tree species richness was, in 
turn, significantly positively correlated with millet production per cap
ita (r = 0.38), thus indicating an indirect link between landscape di
versity and household food access. This can be referred to as an 
“agroecological pathway” (Fig. 2c). Further, fuelwood use was signifi
cantly and positively correlated with tree cover (r = 0.21), but not with 
food access, indicating the absence of an indirect link between landscape 
diversity and food access through an “energy pathway” (Fig. 2c) based 

on fuelwood supply. 

3.3.2. Nioro 

3.3.2.1. Direct links between landscape diversity and food access. In 
Nioro, HFIAS was significantly and positively correlated with the mean 
size of tree patches, although the correlation was weak (r = 0.17) 
(Fig. 6b). The mean size of tree patches was significantly and positively 
correlated with tree cover (r = 0.90), the number of tree patches (r =
0.65), the landscape Shannon (r = 0.65) and Simpson indices (r = 0.73). 
This suggests that larger tree patches, greater tree cover and greater land 
use and land cover diversity were associated with higher levels of food 
access. Hence, as in Niakhar, household food security in Nioro seems to 
be supported by parklands. 

3.3.2.2. Indirect links between landscape diversity and food access. HFIAS 
was significantly and positively correlated with millet production per 
capita (r = 0.36) indicating an increase in food access as millet pro
duction increases. Tree species richness was strongly correlated with 
millet production per capita (r = 0.49), suggesting an indirect link 
(“agroeological pathway”, Fig. 2c) between landscape diversity and 
household food access, such as in Niakhar. Further, fuelwood use was 
found to be significantly and positively correlated with variables of 
agricultural landscape diversity, i.e. tree cover (r = 0.41), landscape 
Shannon index (r = 0.47), landscape Simpson index (r = 0.45), and with 
the mean size of tree patches (r = 0.37). However, fuelwood use was not 
significantly correlated with food access (HFIAS), indicating the absence 
of an indirect “energy pathway” (Fig. 2c) between landscape diversity 
and food access through fuelwood energy. 

4. Discussion 

4.1. Diverse parklands contribute to improved food availability 

4.1.1. Greater millet yield is associated with greater tree density and tree 
species richness 

We showed evidence that the configuration (i.e. tree density) and 
composition (i.e. tree species richness) of the parklands in the 
Groundnut Basin of Senegal are important drivers of the yield of the 
millet crop that is associated with the trees (Fig. 4). Tree density up to a 
certain level is associated with a greater productivity of millet in the 
Nioro parkland while it has no relationships with millet yield in the 
Niakhar parkland. These results corroborate findings from earlier field 
based research, in which higher crop yields were observed in below-tree- 
crown compared to full-sun conditions (e.g. Bayala et al., 2015) as a 
result of improvements in soil water and nutrient availability and supply 

Table 2 
Main characteristics (mean and standard deviation) in the two study sites.  

Unit of observation Type of variable Variables Niakhar Nioro 

Mean Std.dev Mean Std.dev 

Field Food availability indicator Millet yield (kg/ha) 1088 474 1253 607 
Landscape diversity Landscape Shannon index 1.15 0.17 1.06 0.24  

Tree density (tree/ha) 12.2 13.57 1.27 1.37  
Proportion of Faidherbia albida (%) 51.3 37 2.84 11 

Biophysical variables SOC (‰) 6.64 1 6.41 1.36  
Total Nitrogen (ppm) 603 228 496 33.9  
Total Phosphorus (ppm) 272 34 188 21 

Crop management Amount of mineral Nitrogen applied (kg/ha) 20.2 26.7 34.0 37.7  
Amount of mineral Phosphorus applied (kg/ha) 10.4 11.8 19.5 11.6 

Household Landscape diversity Tree cover (%) 7.3 0.8 5.6 0.4  
Tree species richness (count) 6.3 3.16 3 2.23 

Farming system Farm size Per Capita (ha/capita) 0.22 0.23 0.36 0.23  
Millet production Per Capita (kg/capita) 246 207 380 329 

Socio-demographic Size of household (capita) 13.9 6.4 12.57 5.99  
Proportion of men/boy (%) 51 25.3 48.4 27.6 

Variables which significantly differ between sites (p-value <0.05) are displayed in bold. 

Fig. 3. Comparison of food access (HFIAS) between sites (Niakhar and Nioro). 
Chi-squared and the associated p-values are shown. 
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(Sileshi, 2016) and in microclimate conditions (Sida et al., 2018). We 
found, however, that tree cover was no longer positively associated with 
millet yield above a tree density of 5 trees/ha (Fig. 5a). Similarly, using a 
geostatistical approach, Roupsard et al. (2020) showed in a small area in 
the Groundnut Basin that a tree density of 10 trees/ha optimizes the 
benefit of trees on millet yield. The observed thresholds of tree density 
for crop productivity in parkland systems can be interpreted in the 
context of the balance between facilitation and competition between the 
trees and the associated crops for plant growth resources, i.e. light, 
water and nutrients (Bazié et al., 2012; Luedeling et al., 2016). 

Further, our results demonstrated the positive effect of tree species 
richness of parklands on the yield of the associated millet for the two 
sites (Fig. 5b). The processes governing these effects are, however, 

complex (Luedeling et al., 2016). It was found that natural pest control 
and regulation are enhanced by greater tree species diversity in park
lands (Soti et al., 2019). For example, it was observed that in the 
northern part of the Groundnut Basin in Senegal the abundance of 
insectivorous birds, i.e. natural enemies of the millet head miller, 
increased with tree diversity. and effectively controlled pest damage on 
millet panicles, preventing grain losses (Sow et al., 2020). Tree species 
diversity can also boost litterfall productivity via increasing crown 
spatial complementary among trees (Zheng et al., 2019), possibly 
leading to soil fertility improvements. Finally, higher tree species di
versity can also facilitate soil water availability for the associated crops 
in parkland systems through hydraulic redistribution (Bayala et al., 
2008) or through partitioning of water use as a result of a different root 

Fig. 4. Relative contributions of cropping system, biophysical and agricultural landscape diversity factors to the millet yields at farmer’s field scale for (a) the 
Niakhar site and (b) the Nioro site. Only the top-10 most important factors are displayed. For each site, the waffle plot show the contribution of each type of factors to 
the relative influence, where one square represents 1%. 
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stratification, whilst at the same time reducing soil water evaporation, 
drainage and run-off (Bayala and Wallace, 2015). In Niakhar, only tree 
species richness was associated with millet yield, while in the less dense 
and diversified parkland in Nioro, both tree density and tree species 
richness were positively associated with millet yield. Increase in millet 
yield could probably be achieved by optimizing tree species in Niakhar, 
and tree species and tree density in Nioro. 

It should, however, be noted that in this study we did not take into 

account the effect of tree management on crop productivity, although it 
is known to have a strong direct effect on resource use competition (e.g. 
for light, water, nutrient) (Luedeling et al., 2016; van Noordwijk and 
Ong, 1999). For example, for F.albida, it has been shown that tree effects 
on crops are also driven by tree size, crown development and manage
ment of the trees. Mature trees have a stronger positive effect on crops 
than young trees (Sileshi, 2016), and tree pruning has a positive effect 
on crop yield since it affects the competition for light (Dilla et al., 2020). 

Fig. 5. Interaction between tree density a) and tree species richness b) using a partial dependence plot. The partial dependence plot depicts the marginal effect of tree 
density and tree species richness on predicted millet yield. A locally weighted smoothing was applied to the partial dependence smooth regressions and standard 
deviation (ribbon) was added. 

Fig. 6. Correlation-based network to analyze the different pathways linking agricultural landscape diversity to household food access (HFIAS indicator) (a) in 
Niakhar and (b) Nioro. HFIAS is displayed in red (HFIAS = Household Food Insecurity Access), agricultural landscape diversity variables in blue, farming system 
variables in green and energy variable (fuelwood use) in yellow. HFIAS is classified as severely, moderately, mildly food insecure and food secure. For the links, the 
colour scale depicts the value of the coefficient of correlation between the two connected variables. Only highly statistically significant correlation coefficients (p- 
value <0.05) are displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Other nitrogen-fixing species (e.g. Alnus acuminata) were found to 
decrease maize yields as the trees grow older (Ndoli et al., 2017). 

4.1.2. … But soil fertility remains a key driver 
Our analysis also revealed the importance of soil fertility (i.e. soil 

total nitrogen and phosphorus contents) for millet productivity in the 
parkland systems (Fig. 4). It is widely known that low inherent soil 
fertility is a major constraint to crop production on the sandy soils of the 
Senegalese Groundnut Basin (Affholder et al., 2013). The fact that fer
tilizer use was not associated with crop yields in our study was probably 
due to the low variation in applied nitrogen (26 ± 32 kg N/ha). Possibly, 
with the small level of variation, our regression-based analysis could not 
reveal an association between N input use and crop yield. Integrated soil 
fertility management with appropriate use of mineral fertilizer (Van
lauwe et al., 2015) is critical to improve crop productivity in the park
land systems of the region and elsewhere. For instance, Sida et al. (2019) 
showed in Ethiopia and Rwanda that nitrogen and phosphorus use ef
ficiencies varied according to the type of agroforestry systems. We 
anticipate that optimal configuration and composition of parklands can 
enhance fertilizer use efficiency, constituting a crucial aspect of inte
grated soil fertility management. However, additional experiments on 
tree-crop-fertilizer interactions would be needed to verify this assump
tion for the agroforestry systems of this study. In general, nutrient 
recycling by the trees is largely influenced by tree densities and species 
composition (Buresh et al., 1996). Several studies have shown that deep- 
rooted trees are able to capture subsoil nutrients that would have been 
lost to annual crops. These nutrients are ”pumped up” by the trees and 
afterwards made available to the associated crops by leaf litter decom
position (Luedeling et al., 2016). The amount of leached nutrients (and 
the potential benefits of trees) strongly depends on soil type, rainfall 
patterns and root structures (Cadisch et al., 1997). For the sandy soils of 
the study region (Lericollais, 1999), with the intense rainfalls that are 
often observed during the growing season (Taylor et al., 2017), this 
leaching issue is likely to be non-negligible, especially if farmers will 
intensify their cropping systems in the future. 

4.2. Only large tree species have a direct positive association with 
household food access 

Our study demonstrated a direct, but weak, link between parkland 
diversity and food access. Our findings in two Senegalese parklands are 
in line with a recent review by Koffi et al. (2020) concluding that there is 
very little evidence of an increased use of tree products during periods of 
food shortage across sub-Saharan Africa, except during extreme situa
tions such as famine, which was not the case in our study. However, we 
found that households having a higher mean size of tree patches and 
higher tree cover in their surrounding agricultural landscape (i.e. in a 5- 
km radius) tended to be more food secure (i.e. with greater food access). 
The observed large tree patches typically correspond to trees with large 
crowns, which often include fruit tree species such as Adansonia digitata 
(African baobab) or Cordyla pinnata. The fruits of these trees are used for 
human consumption and can substantially contribute to the required 
micro- and macro-nutrients in diets of rural populations (Chivandi et al., 
2015; Félix et al., 2018; Ickowitz et al., 2014). A.digitata fruit pulp is 
widely consumed on a daily basis as juice called “bouye” in wolof. The 
fruits are particularly rich in minerals, vitamins (vitamin C) and car
bohydrates (Chadare et al., 2008). The immature leaves of A.digitata are 
also often cooked and used as leafy vegetables (Asogwa et al., 2021). 
C. pinnata, a dominant tree in the parklands of Nioro, is also known as 
Cayor pear tree, and its fruit is cooked and consumed during the lean 
season. 

It should be noted that our survey was conducted during the lean 
season and household food access was assessed by considering the 
preceding 30 days, which is probably not sufficient to capture the 
overall direct contribution of the dry season fruit trees to food security, 
such as Ziziphus mauritiania and Balanites aegyptiaca (Koffi et al., 2020; 

Lykke et al., 2004). Edible tree products (nuts, leaves, and fruits) of these 
trees are eaten fresh or dried all along the year as part of the normal diet, 
and are essential components of the sauces or condiments. 

4.3. Greater parkland diversity is indirectly associated with household 
food access 

Our results showed an indirect positive link between parkland di
versity and food access, which can be explained by the provision of 
ecosystem services regulating and supporting crop production. This link 
held even true in the less diverse parklands of Nioro (Fig. 6). It can be 
coined as the “agroecological pathway” (Fig. 2c) that connects land
scape diversity to food (access) (Gergel et al., 2020). Thus, the “agro
ecological pathway” includes a wide variety of ecosystem services that 
support agricultural production, and that were described earlier (tree 
density and tree diversity support millet production, see Section 3.2 and 
Section 4.1.1). In line with results of other studies conducted in Africa 
(Rasmussen et al., 2020; Rasmussen et al., 2019), we found that tree 
species richness is of similar importance as tree density for improving 
food access. Households that are in more diverse agricultural land
scapes, in terms of tree species composition, tend to be more food secure 
thanks to a higher agricultural production. 

Finally, we did not find evidence of a contribution of parkland di
versity to household food security through increased energy use from 
fuelwood (the “energy pathway”, Fig. 2c, Gergel et al., 2020), despite 
fuelwood consumption being significantly linked to several variables 
related to wood supply (i.e. tree cover), as it is the case in other park
lands of West Africa (Koffi et al., 2018). This means that farmers with 
more trees in their surroundings tend to use more fuelwood, but this did 
not seem to translate into a positive association with household food 
security. This can be explained by the fact that households relied also on 
gas for cooking food, with July and August being the most important 
months for buying gas as evidenced by the households surveys (see 
supplementary materials Fig. S1), i.e. when food stocks from the last 
rainy season start to run out and when the availability of natural re
sources is still limited. 

4.4. Perspective for additional studies 

Here, we assessed the production of the staple food crop, millet, and 
its contribution to household food security, but on the other hand dis
regarded livestock production, despite it being an integrated part of the 
farming systems in the study area. For instance, in Senegal, livestock 
income was found to be important for purchasing foods, engaging in 
non-farm activities, and hence acting as a real safety net in case of crop 
failure (Alobo Loison and Bignebat, 2017). Several studies have shown 
that agricultural landscape diversity can also contribute to improved 
livestock production (e.g. Baudron et al., 2017; Duriaux Chavarría et al., 
2018). For instance, leguminous fodder trees (such as F. albida) provide 
a rich feed supplement for cattle, thereby increasing milk and meat 
production, and, hence, contribute indirectly to household food security 
(Rosenstock et al., 2019). Secondary, leguminous fodder trees can also 
augment the quantity and quality of manure, that is for most smallholder 
farmers in the study region the main source of nutrients for crop pro
duction (Baudron et al., 2017; Berre et al., 2021). Finally, the provision 
of shade by trees can also improve the livestock productivity. 

In other sahelian parklands, the sale of tree products plays an 
important role in the total income of food insecure households (Koffi 
et al., 2017; Mortimore and Adams, 2001). In this study, we could not 
investigate this “income pathway” (Fig. 2c) due to the lack of variability 
in our tree income variable. All households reported the sales of tree 
products, but this cash flow could not be quantified due to limited data 
reliability of the single household survey. More detailed surveys, e.g. on 
a 5-day basis to coincide with the local market cycle (Koffi et al., 2017), 
would be needed to investigate the “income pathway” in more detail. 

More broadly, we could have expected a positive relationship 
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between tree diversity, food production and agricultural cash income 
with a domino effect on food access. Indeed, food production can be sold 
to generate cash income (Frelat et al., 2016), allowing households to buy 
food items not produced on-farm. Such strategy depends on market 
connection to sell and buy food products (Jones, 2017; Sibhatu and 
Qaim, 2018). Accurately capturing agricultural cash income is not 
feasible with the single survey carried out in our study. While the best 
approach to accurately assess this “income pathway” is to rely on more 
detailed and frequent surveys, other studies have relied on wealth proxy 
derived from asset ownerships or housing characteristics, assuming that 
wealthier households might be able to purchase more diverse food 
(Rasmussen et al., 2019). 

The rights to access to land and use of tree resources can considerably 
shape the agricultural landscape diversity-food security relationships at 
field and household level and should be considered in future studies as 
well. Access rights may limit the direct contribution of certain tree 
species to food access. The rules of access to tree resources typically 
depend on the nature of the land and tree species; the collection of wood, 
fruits, leaves or nuts is generally less restrictive in natural areas or fallow 
lands compared to cultivated fields. For example, at both study sites A. 
digitata is mainly planted in home fields to guarantee tenure by farmers 
(Koffi et al., 2020). In contrast, F.albida is found mainly in bush fields, 
but due to high pressure on this tree, Senegal’s Forest Department has 
strictly limited its access and exploitation, particularly in the Niakhar 
site. The exploitation of useful tree species is also linked to ethnic groups 
and their relationships to trees. The main ethnic group in the Niakhar 
site are the Serer who consider certain trees as totem, and hence 
deliberately preserve them from being cut down (Ba et al., 2018). 

5. Conclusion 

While a growing numbers of studies have shown the close link be
tween tree resources and food security, these studies relied on a 
simplified description of the agricultural landscapes. Our study sheds 
more light on the agricultural landscape diversity-food security nexus in 
three ways: (1) we provided a detailed overview of landscape diversity 
that includes land use, parkland configuration and composition, (2) our 
analysis incorporated two levels of analysis, i.e. the field and the 
household, and (3) we investigated two dimensions of food security 
(food availability and access). 

We found evidence that agricultural landscape diversity, and 
particularly parkland diversity (i.e. tree species richness and tree den
sity), are key drivers of food availability, explaining more than half of 
crop yield variability in both study sites. This positive impact of diverse 
and dense parkland on food availability contributes indirectly to a 
greater household food access through what can be called an “agro
ecological pathway”. 

Our results also suggest that the understanding of the trade-off 
occurring between tree density-tree species richness and food security 
deserves more attention. The positive association between field-level 
tree density and food availability is lost above a threshold of tree den
sity, and a greater tree density and tree species richness (assessed at 
household level) will not necessarily directly translate into greater 
household food access. 

Adopting an integrated landscape approach is required to better 
understand, assess, and optimize the contribution of agroforestry park
lands to the different dimensions of food security. Moreover, tree species 
diversity matters as much as tree density for food availability and food 
access. The general agreement that trees positively contribute to food 
security should be nuanced since there may be a density threshold above 
which the contribution of trees is limited. Optimal landscape manage
ment that accounts for tree density and tree functional diversity (fruit 
trees, leguminous trees, etc.) could help optimize the co-benefits of trees 
for the different food security dimensions. 
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