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As an active part of soil organic matter (SOM), particulate organic matter (POM; 4000-50 pm) quickly reveals
changes occurring in SOM status after land-use change. To evaluate the impact of planting eucalypts and acacias
in the tropical savannas of Congolese coastal plains on SOM quality, we determined P, N and C concentrations in
POM in the 0-10 cm layer in afforested stands (pure or in combination) and savannas.

Soil available P in the coarse fraction of POM (cPOM; 4000-250 um) in afforested stands (> 60 mg kg™ D)

Acaci . . _ . . o
E:;::i;pt was higher than in savannas (11 mg kg~ '), probably due to both high P content and high decomposition rates of
Savanna organic residues that have accumulated over a 30-year period. However, only in the afforested stands containing

acacias was N concentration (> 1.50%) in cPOM higher than in savannas (< 1%), while the whole soil C
content of afforested stands (> 1.25%) was significantly higher than in savannas (< 0.60%). Low C:N ratios of
whole soil and cPOM in afforested stands containing only acacia confirmed the improvement of N status in these
stands compared with afforested stands of pure eucalypt and mixed-species stands. Planting acacias and eu-
calypts in the savannas of coastal Congolese plains improved SOM quality of inherently infertile soils. This
practice may be used for this purpose in other areas of savanna of surrounding countries of the central Africa.

1. Introduction

Soil organic matter (SOM) is an important reserve of nutrients for
plant or tree growth and crop production (Paustian et al., 1990; Swift
et al., 1994; Sikora et al., 1996). Its status is strongly linked to vege-
tation type, soil substrate, climate, landscape and land-use change (Six
et al., 1998; Macedo et al., 2007; Plaza-Bonilla et al., 2014). This link is
even more pronounced in particulate organic matter (POM), an active
component of SOM (Cambardella and Elliot, 1992; Wander, 2004).
Studies have shown that POM can reflect changes occurring in SOM
status following land-use change, after 9 months to annual cropping
systems (Koutika et al., 2001) or after longer periods in forest systems
(Versini et al., 2014; Epron et al., 2015).

Fast-growing plantations of eucalypts were established in the 1950s
on the inherently infertile soils of the native tropical savannas of the
Congolese coastal plains of the Republic of the Congo (Makany, 1964).
These plantations cover large areas of savanna in central Africa,
reaching an extent of 6 million hectares in Gabon, the Democratic Re-
public of the Congo and the Republic of the Congo (Schwartz and
Namri, 2002), providing wood for the pulp industry and for the energy
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needs of the rural population (Delwaulle et al., 1978, 1981; Shure et al.,
2010). However, their productivity declines sharply with successive
rotations due to soil nutrient depletion (Corbeels et al., 2005; Laclau
etal., 2003, 2005). In these low-input systems, the nutrients exported at
harvest are not replenished with fertilizers, and the nutrient demand of
the stands mostly depends on the mineralization of organic residues
(Laclau et al., 2005). To sustain these plantations and help restore and
improve the fertility of the depleted soils of the Congolese coastal
plains, nitrogen-fixing tree species (NFS) such as acacias have been
introduced since the 1990s (Bernhard-Reversat, 1993; Bouillet et al.,
2013).

In addition to their ability to induce accretion of soil C (Forrester
et al., 2013; Koutika et al., 2014), increase forest productivity (Bouillet
et al., 2013; Epron et al., 2013), and change faunal and microbial ac-
tivities and communities (Bernhard-Reversat, 1993; Huang et al.,
2014), mixed-species plantations containing acacias reduce soil N de-
ficiency through an increase in N stock and mineralization (Binkley,
1992; Macedo et al., 2007; Tchichelle et al., 2017). Acacias as some
other trees have also been shown to alleviate P deficiency due to their
ability to access P from deep soil layers and to utilize organic forms of P

particulate organic matter; NFS, Nitrogen-fixing species; OMF, organo-mineral fraction.
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through the secretion of phosphatase enzymes (Sitters et al., 2013). P
deficiency can occur due to its occlusion by Al and Fe oxides in highly
weathered soils (Sanchez and Uehara, 1980) and high P demand by N
fixing species (Inagaki et al., 2011). This limits the potential con-
tribution of NFS to improve soil fertility and ensure tree growth
(Binkley, 1992; Crews, 1993; Créme et al., 2016).

To better understand the role of acacia and eucalypt stands on SOM
quality and nutrient cycling in these nutrient-poor soils of the
Congolese coastal plains, we measured N, C and P concentrations in
POM after more than 30 years of rotational harvests. There were one
hypothesis: the large organic residues (litter, leaves, bark), including
those left after harvest, result in an increase in the P, N and C con-
centrations in POM of afforested stands relative to savannas.

2. Materials and methods
2.1. Site description

The experimental plantations of acacias and eucalypts were estab-
lished on sites located 35 km outside Pointe-Noire city, on the coastal
plains close to Tchissoko village in the Republic of the Congo (4° 44’
41”S& 12° 01’ 51”7 E, 100 m in elevation). The annual precipitation is
ca. 1,200 mm, with a dry season extending from June to September,
and the climate is subequatorial (annual air humidity and air tem-
perature of 85% and 25 °C respectively, with a low seasonal variation of
5 °C). The soils of afforested stands and surrounding selected savannas
are deep Ferralic Arenosols overlying sandstone dating from the Plio-
Pleistocene, and are characterized by a coarse texture (> 90% sand
and < 10% clay) and low cation exchange capacity
(CEC < 0.5cmol kg™ 1 (Mareschal et al., 2011). The soils are low in
both total N content (< 0.07%) and C content (0.4-1.18%) (Koutika
et al., 2014). Mean soil total phosphorus (P), aluminium (Al), iron (Fe)
and manganese (Mn) are respectively 0.06 + 0.01%, 1.02 + 0.03%,
0.99 = 0.03% 4.8 = 0.2% in the 0-5 cm surface layer (Koutika et al.,
2016).

The area was first afforested in 1984 with pure eucalypt hybrids
replacing the original vegetation of native tropical savannah dominated
by the poaceae Loudetia arundinacea (Hochst.) Steud. This original ve-
getation is still found in the three selected surrounding savannas. The
plantation was harvested in May 2004; an experimental trial consisting
of a randomised complete block (4.375 ha of total area, Fig. 1a) with
five replications was established and replanted with Eucalyptus ur-
ophylla S.T. Blake x E. grandis Hill ex Maid (18-52) and Acacia man-
gium Wild, with a starter fertilization of 43 kg ha™ ! of N as ammonium
nitrate. Each block contained three stands of 10 X 10 trees (100 trees)
at a density of 800 trees ha™ !, made up of either 100% A. mangium
(100A), 100% E. urophylla x E. grandis (100E) or a 1:1 mixture of the
two species (50A50E) (Epron et al., 2013; Tchichelle et al., 2017).

Each stand (1,250 m?) consisted of an inner plot of 36 trees (6 X 6),
flanked by two buffer rows on all sides. In the mixed-species 50A50E
stand, the two species were planted alternately along each row. The
spacing between rows was 3.75 m, with 3.33 m between the trees of a
row (Fig. 1b). These are densities commonly used in commercial
plantations and optimal regarding stem wood production in eucalypt
monocultures at this site i.e., 800 trees ha™ ! (Epron et al., 2013). The
rotation ended after 7 years and the trees were harvested in January
2012. The debarked commercial-sized boles were removed at harvest
while all remaining residues, i.e. branches, bark and leaves were left
behind and evenly distributed on the soil surface in each stand. The site
was replanted in March 2012 following the same design, with a closely
related Eucalyptus urophylla X grandis hybrid (18-147) and Acacia
mangium - but with no addition of N fertilizer. However, potassium (K)
was supplied three months after planting (150 kg ha™ ! as KCI) to avoid
the risk of K depletion on these highly weathered tropical soils (Epron
et al., 2013).
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2.2. Soil sampling and preparation

Soils (0-10 cm) were sampled 3 years into the second rotation, in
March 2015, in 3 out of the 5 blocks in the afforested stands and in
three selected savannas nearby. Nine soil samples (18 for the mixed-
species 50A50E stand, i.e., 9 samples collected near an acacia tree,
noted 50A(50e), and 9 others near a eucalypt tree, noted (50a)50E)
were collected in each plot (1.250m?) in 0-0.10m layer using
5 X 5cm sampling cylinders in 3 blocks and surrounding savannas. In
each plot, three transects (six for the 50A50E) were setup starting at the
base of a tree and ending in the centre of the area delimited by four
trees. The three soil samples were separated by 0.7 m from each other
on each transect (Fig. 1b). In the three surrounding savannas, soil was
collected along three transects selected inside an area of the similar
surface than the afforested stands. There was no significant difference
in texture, soil moisture or tree growth across the selected plots and
sites (Epron et al., 2013; Koutika et al., 2014; Tchichelle et al., 2017).
Soil sampling was carried out in the 0-0.10 m because SOM dynamics
and soil faunal activities are mainly concentrated in the shallow layer in
these nutrient-poor soils (d'Annunzio et al., 2008; Epron et al., 2015). A
composite sample of 9 samples for each stand and savanna has been
made. The soil samples were air-dried, sieved to 4 mm, and root frag-
ments were removed. The water pH (sample:solution ratio 1:5) was
measured after the suspensions were shaken for 30 min and equili-
brated for one hour using a S47 SevenMulti TM (Mettler Toledo,
Switzerland).

2.3. Particulate organic matter

POM was determined according to the method described in Epron
et al. (2015). 20 g of air-dried sieved soil, 50 ml of distilled water and
five glass beads were introduced in a 100-ml plastic bottle and shaken
for 16 h at 25°C and at 40 rotations per minute in an end-over-end
shaker to ensure physical fractionation of SOM. The suspension was
wet-sieved to separate the 4000-250 um, 250-50 pm and 0-50 um
fractions. In the two larger fractions, the organic components were
separated from the mineral fraction by decantation. The following
fractions were obtained: coarse POM (cPOM, 4000-250 ym), fine POM
(fPOM, 250-50 um), organo-mineral fraction (OMF, < 50 pm), and the
coarse and fine mineral fractions (cMIN 4000-250 pm and fMIN,
250-50 pm). Of these, only cPOM, fPOM and OMF composed of organic
material are considered in the study presented in this paper. All frac-
tions were dried at 45 °C and weighed. The POM and OMF were ground
and analysed for carbon, nitrogen and phosphorus concentration. Total
nitrogen and carbon were determined by combustion with an elemental
analyser (NCS 2500, Thermoquest, Italy). For resin-extractable P de-
termination, two anion-exchange resin strips (BDH#551642S) each
20 mm X 60 mm were added to 0.5 g (soil) or 0.2-0.4 g (POM fraction)
and suspended in 30 ml distilled water. Phosphate adsorbed by the
anion-exchange resin was recovered in 30 ml of 0.5 M HCl after shaking
for 16 h (100 revs min ™~ 1) according to the method of Tiessen and Moir
(1993). Malachite reactive P was determined at 630nm with a
GENESYS 10 UV-Visible spectrophometer (Cambridge, UK).

2.4. Statistical analyses

Mean and standard error of the mean were calculated. One-way
analyses of variance followed by Tukey's HSD were used to estimate the
effect of the type of land use on each measured variable. Differences
were considered significant when P < 0.05. Pearson correlation coef-
ficients (r) between these measured variables were calculated and
considered significant when P < 0.05. All statistical analyses were
carried out with the R software, version 3.2.4 (R Core Team, 2016).
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Fig. 1. Schematic representation of the trial (a) and the planting and sampling designs showing the inner plot comprising 36 trees (6 X 6) of pure acacia (100A), mixed-species with 50%
acacia and 50% eucalypt trees (50A50E) and pure eucalypt (100E) replicated in five blocks.

3. Results
3.1. Resin P, nitrogen and carbon in whole soils, cPOM, fPOM and OMF

Soil pH varied between 4.3 and 4.6 in the afforested stands, while
that of surrounding savannas was 5.1 (Table 1). Resin P in all whole soil
samples was below 10 mg P kg~ !, with no difference between the af-
forested stands - i.e., pure acacia (100A), mixed-species near an acacia
tree (50A(50e)), mixed-species near an eucalypt tree ((50a)50E), pure
eucalypt (100E) - and the savannas (Fig. 2a). Resin P in cPOM
(4000-250 um) was, however, significantly lower in savanna

Table 1

Soil pH 3 years into the second rotation in the 0-10 cm layer of the mixed-
species acacia and eucalypt plantations of pure acacia (100A), mixed-spe-
cies with 50% acacia and 50% eucalypt trees (50A(50e) or (50a)50E), pure
eucalypt (100E) stands and savanna established in the Congolese coastal
plains.

Year and stands Year 3 of second rotation

Depth 0-10 cm

100A 45 = 0.17a
50A50E 4.3 = 0.10a
100E 4.6 + 0.22a
Savannas 5.1 = 0.38
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(11 mg kg™ ') than in the afforested stands (> 60 mgkg™ ). No sig-
nificant difference was found between afforested stands and savanna
concerning resin P in fPOM (250-50 pm) and OMF (< 50 um) (Fig. 2).

No significant difference was found between N concentrations
(< 0.09%) of whole soil samples, fPOM (< 1.50%) and OMF (0.08%)
from afforested stands and savannas (Fig. 3). However, the N content of
cPOM of afforested stands containing acacias (> 1.50%) was sig-
nificantly higher than that of savannas (< 1%) (Fig. 3). Fig. 4 shows
that whole soil C content of afforested stands (> 1.25%) was sig-
nificantly higher than in savannas (< 0.60). However, no significant
difference was found regarding the C content in cPOM, fPOM and OMF
of afforested stands and savannas, even though lower values were
consistently observed in the savannas (Fig. 4).

C/N ratios of whole soil samples ranged between 21.6 (100E) and
17.9 (savanna). C/N ratio of savanna was significantly lower than those
of pure eucalypt (100E), mixed-species near an acacia (50A(50e)) and
eucalypt ((50a)50E) (Fig. 5a). The C/N ratio of cPOM in 100A was
significantly lower than that of both 100E and savanna (Fig. 5b). No
significant difference was found between the C/N ratios of fPOM and
OMF (Fig. 5¢c &d).
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Fig. 2. Phosphorus (P) in (a) whole soil, (b) coarse fraction of particulate organic matter cPOM (4000-250 pm), (c) fine fraction of particulate organic matter fPOM (250-50 um) and (d)
organo-mineral fraction OMF (< 50 um), in the 0-10 cm soil layer in year 3 of the second rotation of the mixed-species plantation trial of acacias and eucalypts. The letters a, b and ¢
indicate significant differences between pure acacia (100A), mixed-species with 50% acacia and 50% eucalypt trees (50A(50e) or (50a)50E), pure eucalypt (100E) stands and savanna

Fig. 3. Nitrogen (N) in (a) whole soil, (b) coarse
particulate organic matter cPOM
(4000-250 um), (c) fine particulate organic
matter fPOM (250-50 pm) and (d) organo-mi-
neral fraction OMF (< 50 pm), in the 0-10 cm
soil layer in year 3 of the second rotation of the
mixed-species plantation trial of acacias and eu-
calypts. The letters a, b and ¢ indicate significant
differences between pure acacia (100A), mixed-
species with 50% acacia and 50% eucalypt trees
(50A(50e) or (50a)50E), pure eucalypt (100E)
stands and savanna (p < 0.05).
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4. Discussion

4.1. P and N concentrations in coarse POM of afforested stands and
savannas

Previous work has showed that differences amongst plantation
stands were observed at the end of the 7-year rotation in mixed acacia
and eucalypt plantations e.g. (i) the eucalypt tree production benefits
from the N, fixed by acacias (Bouillet et al., 2013; Epron et al., 2013).
Soil N stock in whole (down to 0.25 m depth) also increases, while soil
resin available P decreases in mixed-species stands (Koutika et al.,
2014), probably due to a higher demand for soil P, to supply the pho-
tosynthetic demand of leaves and N, fixation (Koutika et al., 2016). Our
study highlights an improved P and N status in cPOM of afforested soils
relative to savanna soils via: (i) higher available P in cPOM of all af-
forested stands relative to savanna, and (ii) higher N concentrations in
cPOM, but only in afforested stands containing acacias, i.e. 100A and
50A50E, relative to both 100E and savanna. This may be due to dif-
ferences in the relative P and N content of the leaf-litter produced by
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Fig. 4. Carbon (C) in (a) whole soil, (b) coarse particulate
organic matter cPOM (4000-250 pum), (c) fine particulate
organic matter fPOM (250-50 um) and (d) organo-mineral
fraction OMF (< 50 pm), in the 0-10 cm soil layer in year
3 of the second rotation of the mixed-species plantation
trial of acacias and eucalypts. The letters a, b and c indicate
significant differences between pure acacia (100A), mixed-
species with 50% acacia and 50% eucalypt trees (50A(50e)
or (50a)50E), pure eucalypt (100E) stands and savanna
(p < 0.05).

-

d) OMF

eucalypts and acacias (eucalypt leaves being P-rich and N-poor while
the reverse is true for acacia leaves, see Santos et al., 2017). This may
also probably result from the change in faunal activity after afforesta-
tion i.e., higher activity of macroarthropods, particularly cockroaches
in acacia litter as opposed to ants in eucalypt litter (Bernhard-Reversat,
1993), and in microbial activity, i.e., an increase in soil microbial
community diversity and abundance (Huang et al., 2014).

Coarse POM (cPOM, 4000-250 um) is a POM fraction sensitive to
changes in the SOM status following land-use changes. Thus, cPOM of
the three afforested stands displays higher amounts of available P than
in savannas (Fig. 2b). Given that the studied soils had a similar texture
and cover vegetation before afforestation, higher available P con-
centrations in cPOM of afforested stands are probably due to both high
P concentrations in the organic residues (litter, leaves and bark) left
after harvest and their high decomposition rates in this subequatorial
climate (d’Annunzio et al., 2008; Epron et al., 2015). This result is in
agreement with Deng et al. (2017), who reported an increase in soil
available P over time in 220 afforested sites relative to native vegeta-
tion whilst total P was not sensitive enough to detect the change.

Fig. 5. C/N ratios in (a) whole soil, (b) coarse particulate
organic matter cPOM (4000-250 pm), (c) fine particulate
organic matter fPOM (250-50 um) and (d) organo-mineral
fraction OMF (< 50 um), in the 0-10 cm soil layer in year 3
of the second rotation of the mixed-species plantation trial
of acacias and eucalypts in the Congolese coastal plains.
Mean values (with standard errors) of 3 replicates (compo-
site sample). The letters a, b and c indicate significant dif-
ferences between pure acacia (100A), mixed-species with
50% acacia and 50% eucalypt trees (50A(50e) or (50a)50E),
pure eucalypt (100E) stands and Sav, i.e., savanna
(p < 0.05).

s
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A greater cPOM N concentration in afforested stands than in sa-
vannas also reveals an improvement in the N status of SOM, but only in
stands containing acacias, i.e. in 100A, 50A(50e) and (50a)50E
(Fig. 3b). This is likely due to high rates of decomposition and return to
the soil of the organic residues (litterfall and slash residues) derived
from the acacias since the introduction of mixed-species planting
(Tchichelle et al., 2017). In a meta-analysis of 292 sites, Li et al. (2012)
reported an increase in soil total N stock after 50 years of afforestation.
In the Congolese case study, an increase in total N stock was previously
noted (Koutika et al., 2014), which is confirmed by the improvement in
the N status of cPOM < 35 years after afforestation (1984-2015, this
study).

The pure acacia (100A) stands display the greatest improvement in
soil N status, as shown by the lower C/N ratio in whole soil and cPOM
relative to other afforested stands, as previously noted through higher N
mineralisation rates in the study conducted in the same trial 2 years
earlier (Tchichelle et al., 2017). In contrast, the yet lower C/N ratio of
whole savanna soil may be due to lower inputs, and to the nature and
dynamics of organic residues under savanna compared with the affor-
ested stands (Trouvé, 1992; Lata et al., 1999). Unsurprisingly, and as it
has been observed in previous studies, mixed-species plantations result
in soil C accretion (Forrester et al., 2013; Macedo et al., 2007; Koutika
et al., 2014), highlighted in this study by an increase in the C con-
centration of afforested soils relative to savannas (Fig. 4a). Our results
confirm our hypothesis, i.e. that the large organic residues (litter,
leaves, bark) left behind at harvest (e.g. N that returned to the soil
through in situ mineralization was 3.8 times higher in pure acacia
100 A than in pure eucalypt 100E (7.4kgha”'month™! wvs
2.0kgha™ ' month ™! (Tchichelle et al., 2017) do have an impact on
the SOM status of the afforested stands relative to savannas through: (i)
an increase of available P in the cPOM in all afforested stands, (ii) an
increase in N concentration in cPOM of afforested stands containing
acacias, and (iii) an increase in C concentration in whole soil of affor-
ested stands.

5. Conclusions

P and N concentrations in POM and C concentration in whole soils
are greater in afforested stands than in the inherently nutrient-poor
savanna soils of the Congolese coastal plains. Besides from the C ac-
cretion leading to C sequestration in the soil and biota, which is often
observed in afforested savannas worldwide, the mixing of acacias and
eucalypts in plantations increases soil available P in the coarse POM
(4000-250 pm) relatively to the savanna soils. However, the positive
effect of NFS on SOM quality was noted only in the afforested stands
containing acacias, with a higher N concentration in the coarse POM
fraction, the fraction of POM most likely to quickly reflect alterations in
the SOM status after land-use change. In the nutrient-poor savanna soils
of the Congolese coastal plains, and perhaps of the large savanna areas
of central Africa, ascertaining the benefit of planting mixed stands of
acacias and eucalypts to sustain forest plantations and improve soil
fertility calls for an estimation of POM status of afforested stands re-
lative to savannas in the longer term, after several rotations.
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