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Abstract

Low productivity and climate change require climate-smart agriculture (CSA) for sub-Saha-

ran Africa (SSA), through (i) sustainably increasing crop productivity, (ii) enhancing the resil-

ience of agricultural systems, and (iii) offsetting greenhouse gas emissions. We conducted

a meta-analysis on experimental data to evaluate the contributions of combining organic

and mineral nitrogen (N) applications to the three pillars of CSA for maize (Zea mays). Lin-

ear mixed effect modeling was carried out for; (i) grain productivity and agronomic efficiency

of N (AE) inputs, (ii) inter-seasonal yield variability, and (iii) changes in soil organic carbon

(SOC) content, while accounting for the quality of organic amendments and total N rates.

Results showed that combined application of mineral and organic fertilizers leads to greater

responses in productivity and AE as compared to sole applications when more than 100 kg

N ha-1 is used with high-quality organic matter. For yield variability and SOC, no significant

interactions were found when combining mineral and organic fertilizers. The variability of

maize yields in soils amended with high-quality organic matter, except manure, was equal

or smaller than for sole mineral fertilizer. Increases of SOC were only significant for organic

inputs, and more pronounced for high-quality resources. For example, at a total N rate

of 150 kg N ha-1 season-1, combining mineral fertilizer with the highest quality organic

resources (50:50) increased AE by 20% and reduced SOC losses by 18% over 7 growing

seasons as compared to sole mineral fertilizer. We conclude that combining organic and

mineral N fertilizers can have significant positive effects on productivity and AE, but only

improves the other two CSA pillars yield variability and SOC depending on organic resource

input and quality. The findings of our meta-analysis help to tailor a climate smart integrated

soil fertility management in SSA.
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Introduction

Management of fertilizer inputs is of key importance for food security in sub-Saharan Africa

(SSA), as its rapidly growing and urbanizing population is not being met with a proportionate

growth of agricultural production [1]. Smallholder farmers are suffering from nutrient limita-

tions and low nutrient use efficiencies of particularly nitrogen (N) as a consequence of soil

degradation [2–5]. The latter arises when the recycling of crop residues and use of mineral and

organic fertilizers are insufficient to compensate for harvested nutrients and soil organic mat-

ter losses [1, 6]. So far, most increases in food production in SSA have been achieved by agri-

cultural expansion rather than intensification, which comes at the cost of natural lands and

ecosystems. Enhancing the productivity and efficiency of food production in SSA by sustain-

able intensification is therefore crucial to improve its food security [1, 7].

In addition to soil degradation, climate change is further challenging the agriculture-based

societies of SSA [8, 9]. Rainfall is becoming increasingly variable and extreme, and most parts

of Africa are experiencing more frequent droughts as observed from long-term precipitation

and evaporation trends [10]. Yet, the vast majority of staple food production in SSA, such as

maize, comes from rainfed agriculture and is thus vulnerable to changing rainfall regimes [11–

14]. Maize is the primary staple food of more than 300 million people in SSA and an important

source of income for particularly smallholder farmers [5]. Yet, maize productivity in SSA is

low and is being exacerbated by climate change [2, 15, 16]. Maize grain yields on average are

58% below the water-limited potential across tropical Africa [17], and are projected to decline

by up to 12% by 2050 [15, 18]. Furthermore, agriculture in SSA is dominated by smallholder

subsistence farmers, whose adaptive capacity is low and already being compromised by natural

resource degradation [13, 15, 18].

Low productivity and climate change impacts require climate-smart agriculture (CSA),

through (i) improving food security by sustainably increasing crop productivity, (ii) enhancing

the resilience of agricultural systems or adaptive capacity, and (iii) offsetting greenhouse gas

emissions [16, 19–21]. The integrated soil fertility management (ISFM) framework could

play an important role in achieving sustainable intensification in SSA. It aims to increase crop

productivity by maximizing the agronomic efficiency (AE) of fertilizer inputs through the

combined application of mineral and organic fertilizers, improved germplasm, and good agro-

nomic practices [1, 22]. A major component of ISFM is the combined application of mineral

and organic fertilizers. Research in SSA has shown that the combined application can lead to

greater AE of N and crop productivity for maize as compared to separate applications [23–27].

Several reasons have been suggested. First, combining mineral and organic nutrient sources

allows smallholder farmers to apply adequate and proportionate amounts of both minor and

major nutrients, which is necessary to sustain soil fertility and crop production in the long

term [1, 22]. Second, on top of its obvious role for soil fertility, an increased soil organic matter

content also improves other soil functions such as soil biological processes and soil moisture

regime [22]. This, in turn, improves resilience to droughts. And third, combined application

has the potential to generate interactive effects between both resources, as the synchronization

of N availability and plant uptake, both in quantity and time, may be improved through

decomposition and subsequent N (im)mobilization processes [25, 28, 29]. Since N synchrony

depends on N mineralization and immobilization processes, Vanlauwe et al. [28] hypothesized

that organic input quality likely affects potential interactive effects. This was confirmed by

incubation and field trials, where Gentile et al. [24, 25] found that low-quality organic inputs

tend to favor positive interactions when combined with mineral fertilizer, whereas high-qual-

ity organic inputs did not. They argued that the rapid mineralization of high-quality organic N

combined with mineral N would exceed early crop demand, and hence would contribute to
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potential negative interactions. Similarly, high N input rates could exceed crop demand and

lead to negative interactions, suggesting that N input rates may also have an effect on interac-

tive effects [23, 29].

Apart from the effect of combined application on productivity and AE, this study further

aims to evaluate the effects on the other two pillars of CSA, namely the agricultural system’s

resilience and offsetting of greenhouse gas emissions such as CO2. Concerning the resilience

of food production systems, yield reliability can be considered as a key indicator as it defines

the capacity of the system to remain close to its stable yield equilibrium when exposed to sea-

sonal variation in weather conditions [30]. Since climate change is rendering the latter more

variable and extreme, yield variability is expected to increase, and as such will decrease yield

reliability [31, 32]. Yet, despite its importance, research addressing maize yield variability or

reliability in the context of nutrient trials is scarce. Nevertheless, Bayu et al. [33] found through

sorghum trials in Ethiopia that yield stability decreased with the applications of manure com-

bined with higher rates of mineral N, Vanlauwe et al. [34] concluded that combining mineral

N with alley-cropping Senna siamea in maize-cowpea rotations would outperform the other

treatments while achieving an acceptable yield stability, and Fujisaki et al. [35] stated that high

organic inputs are needed in the tropics to ensure yield stability and climate change resilience.

Emissions of CO2, on the other hand, can potentially be mitigated by storing atmospheric

carbon (C) in soils. Apart from the mitigation potential, raising soil organic carbon (SOC)

stocks is also essential for a sustainable soil health and crop productivity [36, 37]. Raising SOC

stocks seems, however, to be challenging. Long-term organic and mineral nutrient trials on

maize monocropping in SSA consistently reported declining SOC [38–42], but found that

treatments with organic inputs were more successful in reducing SOC losses than mineral and

no-input treatments [40, 41, 43–45]. A meta-analysis conducted by Chivenge et al. [23] con-

firmed that mineral fertilizer treatments did not have a significant effect and that organic

inputs were necessary to help reduce SOC loss. Whether organic matter inputs contribute to

stable soil organic matter or SOC, depends on a number of factors influencing the decomposi-

tion and subsequent stabilization processes, such as organic input properties, and soil and cli-

mate variables [46–48]. Fujisaki et al. [35] found that organic input quantity and quality were

more important predictors than soil and climate properties, though quantity likely has a larger

effect than quality according to Gentile et al. [29] and Castellano et al. [49]. In addition, Chi-

venge et al. [46] and Gentile et al. [50] did not observe quality related long-term differences in

SOC stocks.

With climate change adaptation and mitigation of food production systems becoming ever

more critical, the need arises for a complete CSA assessment of the ISFM combined applica-

tion practice. We therefore conducted a meta-analysis of short- and long-term maize nutrient

trials across SSA, in order to assess the effect of combined versus sole application of organic

and mineral N inputs on (i) maize productivity and AE of N, (ii) maize yield variability, and

(iii) on SOC. In parallel, we investigated to what extent these effects were influenced by organic

matter quality and total N input rates.

Materials and methods

Data collection

Relevant peer-reviewed publications were identified through the following key word searches

on Google Scholar: ‘combined application’, ‘Sub-Saharan Africa’, ‘maize’, ‘organic’, and ‘min-

eral’. Studies were selected when providing data on maize grain yields and associated variance

for treatments with (i) sole application of mineral N fertilizer (MR), (ii) sole application of

unprocessed organic resources (OR), and (iii) combined application of mineral and organic
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resources (ORMR). This first selection process refers to steps one to three of the PRISMA

flow chart in Fig 1. A last search was conducted on 9/3/2020, after which no more data were

included. After consolidating the data (Cfr. section Data consolidation), the selection of studies

was further refined by screening for studies with organic resource type and quality parameters

(N, C, polyphenols, lignin content, and C:N ratio), organic and mineral input rates for the pro-

ductivity and AE analyses, and initial and measured SOC with organic C and N rates for the

SOC analyses with C and N inputs, respectively. This second selection round refers to steps

four to six of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Fig 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Flow Chart describing the protocol

used for searching, identifying, and selecting publications for the current meta-analysis. ‘n’ represents the total number of

studies, or for the specific analyses if specified (yield, C-SOC, and N-SOC).

https://doi.org/10.1371/journal.pone.0239552.g001
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(PRISMA) flow chart in Fig 1. By applying the abovementioned selection criteria, 40 studies

were used in total for the productivity and variability analysis, providing 2943 yield data points

across 68 sites. Of those 40 studies, 15 provided 488 SOC data points across 21 sites with C rate

data, and 17 provided 531 SOC data points across 23 sites with organic N rate data. An over-

view of the relevant data from the publications selected for each analysis is given in Table 1.

A no-input treatment (control) was not required, but was absent in only two studies, i.e.

Mungai et al. [54] and Nziguheba et al. [83]. Studies with fallow rotations were excluded as

residual effects were not part of the research questions. When the data were not readily avail-

able from tables, they were extracted from graphs using GraphClick [91], or an attempt was

made to request the authors for their data. Raw data from publications were obtained from

Vanlauwe et al. [92], Franke et al. [93], and the meta-analysis of Chivenge et al. [23], and may

have included gray literature data. Unpublished data were obtained from the works of Chi-

venge et al. [90], Fonte et al. [81], and Mapfumo et al. [89]. For different publications covering

the same trial, only the most exhaustive one was considered (e.g. Vanlauwe et al. [34, 92]). The

following data were also retrieved from all papers: country and site location (name and GPS

coordinates), growing season or year, maize grain yield and variance, type of organic applica-

tion and cropping system, and mineral fertilizer design.

Data consolidation

Information from publications was compiled for each individual site within study. A standard-

ized time measure was assigned to all observations, corresponding to the nth growing season of

the respective experiment. This could be one or two per year, depending on uni- or bimodal

rainfall patterns, respectively. Studies were classified according to their type of organic applica-

tion or cropping system, i.e. monocrop (with biomass inputs), legume intercrop, and legume

rotation. Mineral fertilizer design indicated if phosphorus (P) and potassium (K) are either not

applied (fixed), applied as a blanket for all treatments including a control (fixed), or applied

proportionally with N (NPK). The study of Akinnifesi et al. [43] concerns three different P

rates, so it is used once as an NPK study (3 different MR treatments), and another three times

as blanket studies (one for each P rate). Organic resource types included raw residues from

crops, biomass from alley crops, legume rotation or intercropping, and animal manure. These

were categorized into four quality classes according to the organic data base (ODB) of Palm

et al. [47]. High-quality organic classes I and II have a high N content (>2.5%), and low-qual-

ity classes III and IV have a low N content (<2.5%). Classes I and III have low lignin contents

(<15%), whereas classes II and IV have high lignin contents (>15%) (Table 2). A separate

class Manure was created to include variable organic inputs like farm yard manure and com-

post, analogous to Vanlauwe et al. [94]. When not reported, quality parameters were estimated

using average values from the ODB, or otherwise other literature available. Only a few studies

addressed organic resources of class IV, and for a limited range of N inputs. As a consequence,

class IV was considered too unbalanced throughout the data set and was not used for the yield

and AE modeling. It could, however, be included in the SOC modeling with C input as it was

balanced across the C input range. The combinations of treatment with the organic classes are

hereafter referred to as subtreatments. When organic input rates were reported as tons of bio-

mass added per ha, the organic N and C % input was estimated using the ODB of Palm et al.

[47]. No distinction was made for the different experimental designs or maize varieties, nor

were different planting stands and densities adjusted for. Yield data were used as they were

reported from studies, i.e. as averages from replicated treatments. Standard deviations (SDs)

were conservatively derived from the variance components available, for each reported yield

estimate if possible. The SOC data of a publication were considered relevant when at least two
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Table 1. Overview of the data set used for the YIELD and SOC meta-analyses, with columns for the study�country�site combination index (id), study (reference),

aridity index class (AI class)�, time span of the study’s experiment (time span), number of yield data (nYield), number of SOC data associated with C and N rates

(nSOC C input and nSOC N input, respectively) (�) The site’s aridity index was extracted from the CGIAR-CSI Global-Aridity and Global-PET Database [51].

id reference country site AI class time

span

cropping

system

fertilizer

design

nYield nSOC C

input

nSOC N

input

9 Mariki et al. [52] Tanzania Selian arusha humid 2 monocrop fixed 10 5

11 Kihanda et al. [53] Kenya Embu Kihanda dry sub-

humid

10 monocrop NPK 24 16 16

12 Kihanda et al. [53] Kenya Kavutiri humid 9 monocrop NPK 8 8 8

21 Mungai et al. [54] Kenya Njoro Makuru dry sub-

humid

1 monocrop fixed 10

22 Mungai et al. [54] Kenya Piave Makuru dry sub-

humid

1 monocrop fixed 10

25 Murwira et al. [55] Zimbabwe Muchinjike dry sub-

humid

1 monocrop fixed 12

28 Murwira et al. [55] Zimbabwe Wedza dry sub-

humid

1 monocrop fixed 12

29 Onyango et al. [56] Kenya Anin Kitale dry sub-

humid

3 monocrop fixed 18

30 Onyango et al. [56] Kenya Cheptya kitale dry sub-

humid

2 monocrop fixed 8

31 Onyango et al. [56] Kenya Chobosta kitale dry sub-

humid

3 monocrop fixed 12

32 Onyango et al. [56] Kenya Matunda Kitale dry sub-

humid

3 monocrop fixed 12

33 Snapp [57] Zimbabwe Domboshawa RS dry sub-

humid

1 rotation NPK 4

34 Workayehu [58] Ethiopia Awasa dry sub-

humid

3 monocrop fixed 54

35 Ikerra et al. [59] Malawi Makoka RS humid 2 intercrop fixed 12

36 Kapkiyai et al. [40] Kenya Kabete RS humid 19 monocrop NPK 4

37 Mugendi et al. [60] Kenya Embu RS humid 34 monocrop fixed 6 6

40 Makumba et al. [61] Malawi Makoka RS humid 2 monocrop fixed 12

41 Mugendi et al. in Okalebo

et al. [62, 63]

Kenya Meru humid 2 monocrop fixed 28

42 Nandwa [64] Kenya Kabete humid 5 monocrop NPK 4

43 Gigou and Bredoumy [65] Ivory

Coast

Gagnoa humid 20 monocrop fixed 120 30

44 Iwuafor et al. [66] Benin Derived Savannah dry sub-

humid

2 monocrop fixed 8

45 Iwuafor et al. [66] Nigeria N-Guinea savannah humid 2 monocrop fixed 8

48 Nhamo [67] Zimbabwe Chimombe Mrewa2 dry sub-

humid

1 monocrop fixed 6

49 Nhamo [67] Zimbabwe Chinonda Mrewa3 dry sub-

humid

1 monocrop fixed 6

50 Nhamo [67] Zimbabwe Chisunga Mrewa2 dry sub-

humid

1 monocrop fixed 6

51 Nhamo [67] Zimbabwe Kaitano Mrewa2 dry sub-

humid

1 monocrop fixed 6

52 Nhamo [67] Zimbabwe Mangena Mrewa2 dry sub-

humid

1 monocrop fixed 6

53 Nhamo [67] Zimbabwe Manjoro Mrewa2 dry sub-

humid

1 monocrop fixed 6

54 Nhamo [67] Zimbabwe Mapira Mrewa2 dry sub-

humid

1 monocrop fixed 6

(Continued)
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Table 1. (Continued)

id reference country site AI class time

span

cropping

system

fertilizer

design

nYield nSOC C

input

nSOC N

input

55 Nhamo [67] Zimbabwe Mukudu Mrewa dry sub-

humid

1 monocrop fixed 6

56 Nhamo [67] Zimbabwe Sunha Mrewa2 dry sub-

humid

1 monocrop fixed 6

57 Nhamo [67] Zimbabwe Zivhu Mrewa dry sub-

humid

1 monocrop fixed 6

58 Nziguheba et al. [27] Kenya Nyabeda humid 2 monocrop NPK 14

59 Uyovbisere and Elemo [68] Nigeria Samaru RS dry sub-

humid

4 monocrop NPK 24 16 16

63 Mucheru-Muna et al. [69] Kenya Chuka off station humid 4 monocrop fixed 40

64 Mucheru-Muna et al. [69] Kenya Chuka on-farm humid 3 monocrop fixed 22

65 Nyamangara et al. [70] Zimbabwe Domboshawa RS dry sub-

humid

3 monocrop fixed 18

67 Chilimba et al. in Munthali

[71, 72]

Malawi Bvumbwe humid 1 monocrop fixed 14

68 Chilimba et al. in Munthali

[71, 72]

Malawi Chitedze RS dry sub-

humid

1 monocrop fixed 14

69 Delve [73] unknown unknown 2 monocrop fixed 7

70 Kimani et al. [74] Kenya Kariti humid 2 monocrop NPK 20

71 Kimani et al. [74] Kenya Gatuanyaga semi-arid 1 monocrop NPK 10

72 Kimetu et al. [75] Kenya Kabete RS humid 1 monocrop fixed 8

73 Okalebo et al. [76] Kenya Eldoret dry sub-

humid

4 monocrop fixed 18

74 Ayoola and Adeniyan [77] Nigeria Oniyo humid 2 monocrop NPK 8

75 Ayoola and Adeniyan [77] Nigeria Moloko-ashipa humid 2 monocrop NPK 8

77 Akinnifesi et al. [43] Malawi Makoka RS humid 15 intercrop fixed 136 24 24

77 Akinnifesi et al. [43] Malawi Makoka RS humid 15 intercrop NPK 136 22 22

78 Kimani et al. [78] Kenya Githunguri kiambu humid 1 monocrop fixed 8

79 Kimani et al. [78] Kenya Kariti Maragwa humid 1 monocrop fixed 8

80 Kimani et al. [78] Kenya Mukanduini

Kirinyaga

humid 1 monocrop fixed 8

81 Mugendi et al. [79] Kenya Embu RS humid 22 monocrop fixed 108

82 Mugwe et al. [80] Kenya Chuka on-farm 2 humid 4 monocrop fixed 63

82 Mugwe et al. [80] Kenya Chuka on-farm 2 humid 4 intercrop fixed 63

83 Mugwe et al. [80] Kenya Chuka on-farm 3 humid 4 monocrop fixed 33

83 Mugwe et al. [80] Kenya Chuka on-farm 3 humid 4 intercrop fixed 33

84 Mugwe et al. [80] Kenya Kirege school

Chuka

humid 4 monocrop fixed 64

84 Mugwe et al. [80] Kenya Kirege school

Chuka

humid 4 intercrop fixed 64

90 Fonte et al. [81] Ghana Kwadaso RS humid 7 monocrop fixed 70 22 22

92 Kimaro et al. [82] Tanzania Dodoma2 semi-arid 2 monocrop fixed 18

93 Nziguheba et al. [83] Nigeria Samaru Zaria dry sub-

humid

10 monocrop fixed 90

94 Nziguheba et al. [83] Benin Sekou humid 10 monocrop fixed 90 18 18

94 Nziguheba et al. [83] Benin Sekou humid 10 intercrop fixed 6 6

95 Shisanya et al. [84] Kenya Kirege humid 5 monocrop NPK 52 12 14

96 Anyanzwa et al. [85] Kenya Teso humid 2 monocrop fixed 16 8 8

(Continued)
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measurements over time were reported, so that responses could be calculated by subtracting

the initial SOC from the SOC at a given time during or after the experiment (dSOC). Finally,

soil and climate data were not sufficiently reported and therefore not included in the analysis.

See Table 1 for a complete overview of the data.

Table 1. (Continued)

id reference country site AI class time

span

cropping

system

fertilizer

design

nYield nSOC C

input

nSOC N

input

105 Vanlauwe et al. [34] Nigeria Ibadan IITA

campus1

humid 21 monocrop NPK 72 26 26

106 Mutegi et al. [86] Kenya Mucwa humid 2 monocrop fixed 20 8 10

107 Bedada et al. [45] Ethiopia Beseku dry sub-

humid

6 monocrop NPK 20 4 4

108 Mucheru-Muna et al. [39] Kenya Mucwa poor humid 7 monocrop fixed 70 8 10

109 Mucheru-Muna et al. [39] Kenya Mucwa rich humid 7 monocrop fixed 70 7 9

110 Detchinli and Sogbedji [87] Togo Lome RS dry sub-

humid

4 monocrop NPK 16

111 Tovihoudji et al. [88] Benin CRA-Nord dry sub-

humid

4 monocrop NPK 30 21 21

116 Mapfumo et al. [89] Zimbabwe Domboshawa SOM semi-arid 6 monocrop fixed 90

117 Mapfumo et al. [89] Zimbabwe Makoholi SOM dry sub-

humid

5 monocrop fixed 71

118 Chivenge et al. [90] Kenya Embu RS block B dry sub-

humid

32 monocrop fixed 270 98 98

119 Chivenge et al. [90] Kenya Machanga semi-arid 33 monocrop fixed 243 88 88

120 Fonte et al. [81] Ghana Ayuom humid 9 monocrop fixed 72 22 22

121 Chivenge et al. [90] Kenya Aludeka humid 27 monocrop fixed 234 22 22

122 Chivenge et al. [90] Kenya Sidada humid 27 monocrop fixed 234 22 22

https://doi.org/10.1371/journal.pone.0239552.t001

Table 2. List of organic resource types and associated quality classes, with columns for the respective number of studies (nReferences), number of yield data

(nYield), and number of SOC data with C and N rates different from zero (nSOC C input and N input, respectively).

type class nReferences nYield nSOC C input nSOC N input

Crotalaria juncea (Sun hemp) I 3 74 10 10

Crotalaria ochroleuca I 2 23

Gliricidia sepium I 3 84 24 24

Glycine max (Soybean) I 1 6

Parkia biglobosa (Locust bean) I 1 9 6 6

Tithonia diversifolia I 11 316 50 50

Azadirachta indica (Neem tree) II 2 89 14 14

Calliandra calothyrsus II 10 365 51 51

Leucaena leucocephala II 7 135 20 20

Mucuna pruriens II 4 57 6 6

Senna siamea (Cassia tree) II 3 106 16 16

Arachis hypogaea (Groundnut) III 1 2

Coffee III 1 48

Maize residue III 7 307 52 55

Triticum aestivum (Wheat) III 1 6

Sawdust IV 2 45 45

Compost Manure 4 88 2 17

Farm yard manure Manure 22 579 81 89

https://doi.org/10.1371/journal.pone.0239552.t002
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Statistical analysis

All statistical computing and graphic design for this paper was carried out in R [95](version

3.6.1). Yield data were modeled using the multivariate meta-analytical mixed effects function

rma.mv of the Metafor package, which takes the sampling variances into account [96]. The

advantage is that this function allows to account for yield variation and covariance among

treatments, thereby avoiding biased estimates, overestimating variances, and increasing

chances of finding false significant effects [97, 98]. For the SOC data, on the other hand, the

reporting of sampling variances was too scarce, hence the lmer function of the lme4 package

was used [99]. As opposed to rma.mv, the lmerfunction assumes sampling variances are not

exactly known. The first is thus essentially a special case of the latter [96]. Absolute yield and

SOC values are used for analysis instead of effect sizes. As such, the model can account for var-

iation in yields and SOC of control treatments and their covariance with MR, OR and MROR.

Yield analysis. The linear mixed effect model for the yield analysis (YIELD) was com-

posed of the square root transformed absolute yield as the outcome variable, together with

fixed and random effect terms. Residual and QQ plots revealed no significant issues for linear-

ity and normality, but that a square root transformation was necessary to improve homosce-

dasticity. The choice of fixed effects, also called predictors or moderators, is hypothesis-based

and expresses the particular interest in each of their level’s effect on productivity and variabil-

ity. Maximum likelihood tests were used to compare models with and without fixed effects, in

order to evaluate their contribution to the model. Random effects, on the other hand, are cho-

sen based on their significant contribution to explained variance, while aiming for the most

parsimonious model. Their contribution’s significance was evaluated using restricted maxi-

mum likelihood tests. As such, fixed effects were included in the model for the following vari-

ables: mineral N input rates, organic N input rates of each organic class, the interactions

between them, the quadratic term of each rate, and also their quadratic terms. Furthermore,

fixed effects were included for cropping system and mineral fertilizer design to correct for dif-

ferences in overall mean yield. As for the random effect structure, random intercepts were

included for study, individual observations, site, and time nested within site (hereafter referred

to as time). In order to also account for the correlated random effects of the different treat-

ments within site and within time, treatment is included in the random structure as random

slopes for the random intercepts site and time. The random terms allow the model to account

for their inherent differences and non-independences.

In this study, interactive effects are defined as the difference in yield response when applied

in combination, versus the sum of the yields when applied solely as OR and MR. They are

quantified according to Eq 1 [28]:

IE ¼ YORMR � Ycontrol � ðYMR � YcontrolÞ � ðYOR � YcontrolÞ ð1Þ

where IE means the interactive effect and Ycontrol, YMR, YOR, and YORMR are the mean yield

estimates of the respective Control, MR, OR, and ORMR treatments. A positive interaction is

thus observed when the combined application (with 50% OR and 50% MR) yields more than

the sum of the sole applications. This means that a yield response curve of ORMR with a posi-

tive interaction would sit above the ORMR dashed line (b) as illustrated in Fig 2 below.

The coefficients of the YIELD model were used to predict yield estimates and construct

mean yield response and AE curves by total N input rate. Predictions were done for total N

input rates for which there were actual yield observations, but up until a maximal total N input

rate of 200 kg N ha-1, after which inputs are considered not sensible anymore. These predic-

tions were also done for a fixed mineral fertilizer design and separately for each organic class

and ORMR treatments with three different organic N proportions, i.e. 25, 50, and 75% (Cfr.
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section Modeled yields and agronomic efficiency). The AE was computed in accordance to

Vanlauwe et al. [94], i.e. by taking the differences in predicted maize grain yields of MR,

OR and ORMR from the Control (kg ha-1), and dividing these by the amount of N applied

(kg kg-1).

The random variance, as modeled by the YIELD model’s random structure, can be used as

an estimation of yield variability for each treatment across time. The interest of this paper,

however, does not reside in the variability of each treatment, but in the variability of each sub-

treatment instead. Fitting random slopes for subtreatments was not possible, because covari-

ances would have needed to be estimated between subtreatments that do not make sense or

for which no data are available. As an alternative, the subtreatment variances were extracted

from the random structure of models that were run for subsets of each organic quality class

separately.

The YIELD model and individual organic class models therefore provided yield variance

and covariance estimations across time. These were then used to compute variance responses

using Eq 2:

varresponse ¼ vartreatment þ varcontrol � 2 � covartreatment;control ð2Þ

with var and covar being the variance and covariance, respectively. The responses were subse-

quently divided by the mean predicted yields from the YIELD model to obtain relative vari-

ance responses. Note that since the data were modeled using a square root transformation, the

variance responses are in fact SD responses in t ha-1 for the original data.

SOC analysis. Two separate linear mixed effect models were designed to model dSOC,

one with organic N rates as predictors (N-SOC model) and one with organic C rates (C-SOC

model). Stocks of SOC could not be modeled due to a lack of reported soil bulk densities. For

the N-SOC model, fixed effects were included for organic N rates of different quality classes,

mineral N rate, the quadratic terms and interactive terms of both. For the C-SOC model,

fixed effects were included for organic C rates of different quality classes, mineral N rate, and

Fig 2. Graph illustrating conceptual response curves of a mineral, organic, and combined input treatment with

substitutive design (50% mineral, 50% organic) with interactive effects that can be (a) positive, (b) none existent,

and (c) negative.

https://doi.org/10.1371/journal.pone.0239552.g002
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interactive terms of both. Fitting quadratic terms was not possible. Both models also included

fixed effects for initial SOC and mineral fertilizing design for model fitting purposes in analogy

with the YIELD model. Cropping system was not relevant, as all SOC reporting studies were

monocropping with biomass application. Both models have the same random intercepts for

site and time. Residual and QQ plots confirmed that there were no significant violations of lin-

earity, normality, and homoscedasticity and hence no transformations were needed.

The outputs of the N-SOC and C-SOC models are used to predict dSOC across cumulative

N and organic C input rates (t ha-1) for which data are available, at a data set average initial

SOC of 1.8% and for a fixed mineral fertilizer design. For the N-SOC graph these dSOC are

plotted separately for each organic class and ORMR with different proportions of organic N

input, while for the C-SOC graphs these are plotted for each treatment and organic class at a

cumulative mineral N input of 750 kg ha-1.

Publication bias and sensitivity analyses. Publication bias was assessed by funnel plot

symmetry, which was statistically tested by adding the sampling variance as a moderator in

the model as a way of extending Egger’s test to complex models [100, 101]. While the funnel

plot looked slightly asymmetric, the Egger’s test confirmed it was significantly symmetric

(p< 0.05), therefore suggesting the absence of publication bias. A sensitivity analysis was car-

ried out for the YIELD model, by re-fitting the model without the most influential studies.

Based on the diagonal values of the Hat matrix, four studies (469 or 17% of total data points)

were identified as relatively most influential, while five studies (1478 or 52% of total data

points) were identified based on their Cook’s distances [100]. Removing these study sets did

not change the overall trends and conclusions for the yield analysis, with the exception of

organic class II and to a greater extent III that were substantially underrepresented in the

smallest Cook’s distance subset. The current YIELD model was therefore considered to be suf-

ficiently robust. The SOC model was fitted with a considerably smaller amount of data, and

was therefore considered more sensitive to influential studies. In fact, two out of the 15 studies

provided long-term data accounting for almost 50% of the total amount of data. Leaving them

out did impact the models and consequent findings considerably. However, long-term data on

SOC in SSA are scarce, yet could provide valuable insights [102]. We therefore nevertheless

consider that including the available long-term data is justified and can contribute to the

research questions of this paper, despite their relatively large influence on the results.

Results

Overview original data

The frequency distribution of yield data across total N rates gives an indication of the amount

of data available by N rate, as shown by the density graph of Fig 3. The total N input rate for

the MR treatments ranged from 20 to 175 kg N ha-1, for OR from 10 to 524 kg N ha-1, and for

ORMR from 45 to 645 kg N ha-1. The graph suggests a potential bias towards higher yields for

ORMR treatments compared to MR and OR, and to a lesser extent MR compared to OR. This

implies that N rate is a necessary covariate in the meta-analysis.

Fig 4 shows the average and variation of yields for the different treatments, across all publi-

cations and study sites, and for each individually. The graph reveals that on average ORMR

treatments tend to represent higher yield averages, followed by MR and OR, respectively. The

control treatments represent, as expected, the lowest averages.

With the reported yield data, one can calculate the AE across total N input and by treatment

and organic class (Fig 5). From these calculations it is observed that the AE decreases in value

as well as in variability with increasing N input. Differences between organic qualities seem to

confirm this, as classes with a low N content tend to be more variable and lead to both higher
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and lower AE values than classes with high N content. This illustrates the importance of ana-

lyzing organic quality class and N rate with mixed effect models, where the variance between

those classes in relation to N rate can be taken into account.

Modeled yields and agronomic efficiency

The YIELD model results (S1 Table) show significant positive effects for input rates of each of

the organic quality classes and mineral N, meaning that their mean maize grain yields are esti-

mated to be significantly greater than the control treatment. The model output also revealed a

significant interaction between organic and mineral N rates for all organic classes (P< 0.05),

meaning that the effect of organic inputs in the combined ORMR treatment depends on the

estimated effect of mineral N, and vice versa. Intercropping as a cropping system has a signifi-

cant yield decline as opposed to monocrop with biomass inputs, whereas rotation is not signif-

icantly different from the latter. Mineral fertilizing design does not have a significant effect on

yields. The relationship of model predicted yields and their derived AE with total N rate is

visualized in Figs 6 and 7, respectively.

Predicted yields increase with increasing total N rate, but only up to a certain point, which

depends on treatment and organic quality. The combined application ORMR consistently

leads to greater yields than OR across the whole range of total N inputs. Compared to MR,

however, its relative effect depends on total N input, organic class, and its proportion of

organic N. Below total N rates of 100-125 kg N ha-1, the ORMR of all organic classes with 25%

Fig 3. Distribution of data points, represented by scaled count data for each subtreatment across total N rate, applied as mineral or organic

fertilizer.

https://doi.org/10.1371/journal.pone.0239552.g003
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organic N have similar yields to that of MR. With higher organic N proportions, the predicted

ORMR yields tend to gravitate towards the lower yield predictions of OR. These reduced

responses get more pronounced in the order of class I, II, Manure, and in particular class III.

For the latter class, OR and ORMR with organic N proportions greater than 50% exhibit cul-

minating and decreasing ORMR responses within the observed range of input rates. On the

other hand, with total N rates exceeding 100-125 kg total N ha-1, the MR response curve flat-

tens, while those of OR and ORMR (except for organic class III) do not. As a result, ORMR

will outperform MR at a certain N rate, depending again on organic class and proportion. The

25% organic ORMR of classes I and II outperform MR earlier than classes III and Manure.

For ORMR with higher organic proportions, one needs higher N rates to outperform MR. For

organic class III, however, only the 25% organic ORMR eventually outperforms MR within the

0-200 kg total N input range.

Fig 4. (left) Overview of reported maize grain yield (t ha-1) data, averaged by publication, site, and treatment, and ranked following increasing

ORMR yields. Error bars represent the +- 1.96 � mean standard error on that average. The overall yield average by treatment and across publications

and sites is labeled as ‘summary measure’ at the bottom of the graph. (top right) Distribution of maize grain yield (t ha-1) values by treatment.

https://doi.org/10.1371/journal.pone.0239552.g004
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Apart from OR class III, all subtreatments have a similar decreasing AE with increasing

total N input, i.e. the decrease is fastest for MR, slowest for OR and intermediate for ORMR.

The inclinations of the latter AE curves increase with more mineral N, and decrease with

higher proportions of organic N. Class III is the exception as it is the only organic class with

a rapidly declining AE for OR as well as for ORMR, and thus similar to MR. The AE of the

ORMR treatments always outperforms those of OR, but only outperform that of MR depend-

ing on N rate, organic class, and its organic N proportion. The MR treatment has the highest

AE for a N rate below 100 kg ha-1, but above that MR will gradually be outperformed by classes

I, II, and Manure. With higher organic N proportions of ORMR, the AE curves get flatter, but

also start lower, and therefore outperform MR only at higher total N inputs. So, while AE of

MR was the highest at low N rates, it declined the most rapidly with increasing N inputs,

whereas the AE of OR treatments were the lowest at low N rates, but did not decrease substan-

tially with increasing N inputs. By analogy, the same was observed for ORMR with low and

high organic proportions, respectively.

Modeled yield variability

The YIELD and individual organic class models report yield variances, which allow a calcula-

tion of yield SD responses relative to predicted yields (Fig 8). The graph indicates that variabil-

ity of organic input treatments increases with decreasing quality, so in the order of class I, II,

Manure, and III. Yield variability for the MR treatment is estimated to be higher than OR class

I and II, but lower than OR class Manure and III. Combining the OR treatments with MR,

seems to increase the variability of the highest organic quality class I, and decrease the variabil-

ity of the lowest organic quality class III, without considerable effect on classes II and Manure.

Modeled SOC

The N-SOC and C-SOC models reveal variances across site being 4.5 and 3.5 times bigger,

respectively, than across time, and residual variances smaller than 0.03% (S2 and S3 Tables).

Fig 5. The agronomic efficiency (AE, in kg kgN-1) across a total N input range of 0-200 (kg ha-1), applied as mineral or organic fertilizer, and

segregated by treatment and organic input quality class.

https://doi.org/10.1371/journal.pone.0239552.g005
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Both models also show that neither of the mineral N and organic input interactions are signifi-

cant, nor are those of mineral N rate and mineral fertilizer design. The N-SOC model esti-

mated that cumulative N rates from all organic quality classes have a significant increasing

effect on SOC, but with diminishing responses as seen from the negative quadratic coefficients.

These estimates are, however, relatively larger for the low-quality classes III and especially IV.

The C-SOC model on the other hand, estimated significant SOC increases for C rates from all

classes except for IV, but with relatively greater estimates for high-quality classes. The esti-

mates decrease following the order of class Manure, I, II, III, and IV that was not significant.

The initial SOC had a significant negative effect on SOC change, meaning that sites with

higher initial SOC on average experience more SOC loss. The predicted dSOC according to N

or C inputs are visualized in Figs 9 and 10, respectively.

Fig 6. Model predicted maize grain yield values were plotted for the available total N rate, within a range of 0-200 (kg ha-1), applied as mineral or

organic fertilizer, separately for each organic class and ORMR with three different organic N rate proportions. The root mean square error (RMSE,

in t ha-1) is given for the different predicted yields from treatments with the respective organic classes.

https://doi.org/10.1371/journal.pone.0239552.g006
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The N-SOC model predictions of dSOC indicate that the OR treatments have increasingly

positive effects on dSOC with increasing N rates, the extent of the effect depending on

organic input quality. The positive effects of OR are most pronounced for the high-quality

classes I and Manure, followed by decreasing responses from classes II, III, and IV, respec-

tively. The graphs confirm visually that the effect of mineral N is not significant, and nor is

its interaction with organic inputs, since the positive effect of ORMR on dSOC seems to be

directly related to the organic proportion of ORMR. The C-SOC model predictions of dSOC

confirm the model output (Fig 10). On the one hand, organic C inputs from high-quality

organic resources have a greater positive effect on dSOC than the low-quality resources,

while on the other hand, the effect of mineral N seems negligible and its interaction with

organic inputs absent.

Fig 7. The agronomic efficiency (AE, in kg kgN-1) was plotted for the available total N rate, within a range of 0-200 (kg ha-1), applied as mineral

or organic fertilizer, separately for each organic class and for ORMR with three different organic N input proportions.

https://doi.org/10.1371/journal.pone.0239552.g007
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Discussion

The ISFM practice of combined organic and mineral fertilizer application has been found to

address the three CSA pillars, but to different extents. These extents depend on input rates and

organic resource quality, which determine the combined application effect relative to the sole

organic and mineral applications. Our analyses showed that ORMR treatments lead to positive

interactions, and to AEs and yields that can outperform those of MR treatments. In fact, the

ORMR AE curves are a direct evidence of these positive interactions, as the combination of

organic and mineral N resources gives higher yields than the individual resources, and at high

N rates. These findings are not entirely lining up with the meta-analysis of Chivenge et al. [23].

Like other studies, they revealed potentially greater yield responses for the combined applica-

tion treatments [24–27], but could not find evidence for improved AE as predominantly nega-

tive interactive effects were observed between the two resources. They found that the AE for

OR and ORMR treatments were similar and both lower than the AE of MR treatments, and

suggested that potential interactive effects might have been masked with reduced AE due to

relatively high total N rates of ORMR. We suspect that the different modeling approach of the

current analysis, with in particular the emphasis on N rate effects, might have allowed us to

identify positive interactions where Chivenge et al. [23] found none or negative ones. Indeed,

including N rates as predictors in the model revealed the importance of looking in detail at N

rate for productivity and AE differences between treatments (Figs 6 and 7). In contrast to Chi-

venge et al. [23], the meta-analysis of Vanlauwe et al. [94] observed that combining mineral N

with manure or compost resulted in the highest AE. In our analysis, this observation is more

nuanced, as it is true for high total N rates only.

The observed ORMR interactions and their effect on AE and yield, relative to the OR and

MR treatments, were affected by both N rate and organic resource quality. The diminishing

Fig 8. Yield standard deviation (SD) responses across time are shown for each subtreatment, and relative to their respective predicted yield

values. Values are computed based on the random variances across time from the YIELD and individual organic class models.

https://doi.org/10.1371/journal.pone.0239552.g008
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Fig 9. The output of the N-SOC model is used to predict changes in soil organic carbon from its initial values (dSOC) across the

cumulative total N input rates (t ha-1), applied as mineral or organic fertilizer and for which data are available, but limited to five

cumulative t N ha-1. They are plotted at a data base average initial SOC of 1.8% and separately for each organic class and ORMR with different

proportions of organic N content. The root mean square error (RMSE, in %) is given for the different predicted dSOCs from treatments with the

respective organic classes.

https://doi.org/10.1371/journal.pone.0239552.g009
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yield increases across N rates, as a result of declining AEs across N rates, were apparent for all

treatments and hence support earlier findings that the AE decreases with N rate for the organic

treatments [23] and MR [94]. The relatively fast AE decline of MR could be explained by an

oversupply of N that is exceeding crop uptake, while the more stable AE of organic treatments

could be attributed to other soil health benefits than nutrient supply only [103, 104]. The large

initial AE of MR and ORMR with low organic N, are likely due to the high plant availability of

N when given in its mineral form, which will be lower in applications with higher organic pro-

portions due to possible immobilization [105]. Hence, in our analysis, the ORMR treatments

seem to reflect benefits from both sole OR and MR treatments; while their mineral N ensures a

relatively high AE, their organic properties contribute to a more stable AE across N input rate.

An important role was observed for organic resource quality on treatment and interaction

effects, confirming what has been postulated [28, 47] and observed in previous studies. Our

findings agree with those of Chivenge et al. [23], who found greater yield responses for OR

and ORMR treatments with high-quality organic resources as opposed to low quality

resources. However, our results are not in line with Vanlauwe et al. [94], who found that only

OR class II treatments showed significantly higher AE compared to MR treatments, and are in

direct contrast with Gentile et al. [24, 25], who found that ORMR treatments with low-quality

organic resources tend to favor positive interactions as opposed to high-quality resources.

According to the modeled predictions, increasing inputs of low-quality organic resources,

such as class III, does not increase yields per se. In fact, low-quality organic resources would

increase yields at low rates, but have a detrimental effect at high rates. This can be explained by

the fact that low-quality organic resources have a relatively high C:N ratio, which at high input

rates can lead to N immobilization in the soil [23, 24]. The immobilization of N consequently

lowers the N availability for plants and so affects the yields negatively. The same explanation

can also be used for the interpretation of the organic quality effect on AE. Increasing the rate

Fig 10. The output of the C-SOC model is used to predict changes in soil organic carbon from its initial values (dSOC) across cumulative organic

carbon input rates. These are then plotted for each treatment and organic class, and at an initial SOC of 1.8% and cumulative mineral N input of 750 kg

ha-1. The 750 kg ha-1 was based on an annual mineral N application of 75 kg during a time frame of 10 years. The root mean square error (RMSE, in %)

is given for the dSOC predictions of the different subtreatments.

https://doi.org/10.1371/journal.pone.0239552.g010
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of low-quality organic resources of class III, likely increases the N-immobilization and would

cause the observed sharp declines in AE. However, one would then assume that the N-immo-

bilization of OR class III can be alleviated by mixing it with mineral N, i.e. ORMR class III.

While we observed evidence for a slight positive interaction, we would have expected a stron-

ger response based on the given explanation. From our observations, it seems that N immobili-

zation is a more important factor than the potentially enhanced organic N mineralization if

high-quality organic resources are combined with mineral N. The latter has been argued by

Gentile et al. [24, 25] stating that the excessive amounts of N so supplied would exceed early

crop demand, and contribute to negative interactions. In addition, Chivenge et al. [23] sug-

gested that while N immobilization might suppress yields on the short term, this would not

necessarily be the case in the long-run due to potential residual effects. However, despite the

fact that the meta-analysis included both short- and long-term studies, no evidence was found

for the latter.

Many factors like pests and diseases, weeds, and different management practices are

involved in causing yield variability over time [106]. Since these factors are assumed to be con-

trolled for in the experiments included in the meta-analysis, we are in fact only considering

variability due to meteorological differences between seasons and potential residual effects of

treatments. Meteorological differences could be buffered to some extent with soil organic mat-

ter build-up, e.g. by improving the soil’s water holding capacity [107]. Mineral N on the con-

trary, has more short-lived effects and potentially even facilitates the degradation of soil

organic matter [108]. The long-term trials of Vanlauwe et al. [34] did not show any evidence

of the latter, as they observed reduced variability for the ORMR treatments. The suggested

rationale was that ORMR has sufficient N from mineral N inputs, while it’s organic matter

could buffer some of the reduced moisture effects. In this regard we would have expected a

lower variability for the OR and ORMR treatments compared to MR. However, our results

did not confirm facilitated organic matter degradation by mineral N, nor did they suggest a

decreased variability for ORMR compared to OR. Mineral N was not observed to affect the

variability of OR treatments when the two resources were combined. Comparing the variabil-

ity of OR with that of MR indicates that organic resource quality plays a role. The variability of

OR was only lower than that of MR for high-quality organic resources of class I and II. Organic

class Manure was an exception, as together with the low-quality class III they were estimated

to have more variable yields than MR. Chivenge et al. [23] suggested that this organic quality

influence could be explained by the greater residual effects observed for high-quality organic

resources, whether applied as OR or ORMR. Both our meta-analyses thus challenge the general

consensus that a slow decomposition associated with low-quality organic resources would lead

to stronger residual effects over time.

Our results confirm observations by Chivenge et al. [23], that SOC can be significantly

raised only by adding organic resources to the soil, and that the SOC responses increase with

increasing organic N and C input. Mineral N had no significant effect on SOC and conversely

there was no interaction with organic inputs. Applying mineral N is expected to enhance root

growth and contribute to SOC if the added N can be taken up by the plants, otherwise excess

N might facilitate the degradation of soil organic matter with loss of SOC as a result [109].

This could imply an initial increase and consequent decrease of SOC under MR, as was

observed by Gentile [109] and Chivenge et al. [23]. The same observation could perhaps be

made for the N-SOC model predicted SOC, although the MR response was not significant.

The effect of MR on long-term soil organic matter stabilization can be either negative [41] or

neutral [38, 42, 50], but generally seems to be complex [108, 109]. The study treatments

included in this analysis reported or were assumed to have their above ground crop residues

removed after harvest. This implies that an increase of biomass due to an improved soil fertility

PLOS ONE Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice

PLOS ONE | https://doi.org/10.1371/journal.pone.0239552 September 24, 2020 20 / 30

https://doi.org/10.1371/journal.pone.0239552


could only have benefited SOC through the roots [110]. In a situation where crop residues

return completely to the soil, MR (and even Control) treatments are expected to show more

positive SOC responses [111].

The effects of organic N and C rate on SOC responses were to a large extent determined by

the quality of the organic resource. From the cumulative N input graphs (Fig 9), increasingly

steeper response curves were observed for decreasing organic resource quality. The reason is

likely that for a certain amount of organic N added, more C will be added by low-quality clas-

ses with a relatively high C:N ratio, such as class III and IV. However, for an unbiased view

regarding C input, the cumulative C input graphs (Fig 10) show clearly that high-quality

organic classes with a relatively high N content and low C:N ratio achieved higher SOC

responses than low-quality organic inputs with a high C:N ratio, such as class IV whose

responses were not significant. These results are supporting Cotrufo et al. [112] and Castellano

et al. [49] who argued that low-quality organic input does not contribute more to soil organic

matter (SOM) due to its slower decomposition and consequent accumulation in the soil.

Instead, proportionally more SOM would be formed from high-quality organic matter,

because a faster decomposition results in more initial microbial biomass, which is increasingly

shown to be the largest contributor to stable SOM [112, 113]. Gentile et al. [50], however,

found that organic quality did not affect the stabilization of SOC in the long term, and argued

that all organic matter would eventually get decomposed and passed through the microbial

pool. Perhaps, the reason why this was not observed in the current analysis, is that there were

not enough long-term studies included in the analysis that could potentially confirm the argu-

ments of Gentile et al. [50].

We have seen that compared to the sole applications, the combination application has a sig-

nificant positive effect on maize yield productivity and AE of applied N, which is more pro-

nounced at higher N rates. For yield variability, but especially for SOC, the difference of the

combined with the sole organic application was marginal. One can therefore not state that the

ISFM combined application decreased yield variability or increased SOC compared to the sole

organic and mineral N applications. It has been shown, however, that while the ISFM com-

bined application may not outperform the sole applications on individual CSA pillars, the

practice is necessary to simultaneously and optimally address all three pillars. First, mineral N

proved to be necessary to achieve the highest productivity and AE for N rates < 100 kg N ha-1.

This is important since the global average in 2013 was only 74 kg N ha-1, but it is particularly

relevant in the context of smallholder farming in SSA, where mineral N use is even lower yet

most yield production increase is needed [114, 115]. Within this N input range, the AE of total

applied N would decrease when mineral N is combined with organic inputs, but this is limited

when high-quality resources are used. Second, when considering the other two aspects of CSA,

we observe that high quality organic inputs become necessary to achieve the lowest yield vari-

ability and greatest SOC increase, independent if in combination with mineral N. In summary,

the findings of this paper therefore suggest that mineral N is necessary for the best low-input

productivity, while high quality organics are necessary for achieving the lowest variability

(class I or II) and highest SOC response (class I, II, or Manure). Combining the mineral and

organic resources is therefore a way to achieve a win-win-win situation, where productivity,

variability, and SOC are all three improved and optimized. For high-input scenarios, the case

of combined application is even stronger, as it will outperform the mineral N fertilizer applica-

tion effects on productivity.

In this paper, organic resources were classified into different organic quality classes, accord-

ing to their quality parameters N, lignin and polyphenol contents as proposed by Palm et al.

[47]. A separate class Manure was made for organic resources like farm yard manure, green

manure and compost, whose contents are variable and thus their quality unknown. Yet, based
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on N content and productivity and AE response similarities, classes I, II, and Manure, were

grouped as high-quality organic resources throughout the analyses. Classes III and IV were

consequently grouped as low-quality organic resources. This high- versus low-quality subdivi-

sion proved to be relevant, as the effects between high- and low-quality resources on produc-

tivity and AE were considerably more distinctive than those within the quality groups. This

implies that N content was the main factor contributing to differences in organic resource

quality, and confirms that the effect of polyphenol content on productivity and AE is minimal

[23]. The high-low quality distinction is less clear for yield variability, due to the relatively high

variability under class Manure treatments. For SOC, the distinction is also less pronounced,

because the relatively high phenol content of class II compared to class I seemed to have

reduced its SOC response. Nevertheless, high-quality organic resources clearly outperform

low-quality resources, which challenges the concept of enhanced SOC biochemical stabiliza-

tion due to the recalcitrance of lignin and polyphenols [47, 50].

An inherent limitation for meta-analyses is the presence of research and publication bias

[116]. In this paper, research bias has been addressed by taking variance components as

weighting factors in the models run with the rma.mv function. Publication bias has been miti-

gated to an extent by including non-published data, but has also been tested for and evaluated

through sensitivity analyses. Another set of limitations to the current meta-analysis are the

data constraints that result from the selection criteria. Apart from the main selection criteria

such as the specific treatments with maize cropping in SSA, a number of other data variables

were often missing because they were either not recorded or simply not reported. Hence, we

encourage further research publications to provide yield data for individual seasons instead of

averages, variance components of these yield data, input quality parameters, but most impor-

tantly organic N rate estimations. The lack of organic N rates alone was accountable for the

exclusion of a substantial amount of otherwise useful yield data. For intercropping and rota-

tion systems, especially, the estimation of organic N inputs is challenging, and results in an

underrepresentation of these cropping systems in the final data set. Furthermore, it is clear

that the majority of studies missed the opportunity to report potential differences in soil char-

acteristics between start and end of experiments, and hence could not be used for the SOC

analysis for instance. Similarly, organic quality class IV, and to some extent class III, was

underrepresented in the collected literature, and consequently could not take part in the yield

analyses. Lastly, we emphasize the need for long-term trials, specifically on weathered soils in

the tropics, in order to allow the assessment of treatment effects on yield and SOC over time.

Conclusion

Meta-analyzing 40 short- and long-term maize nutrient trials across SSA, revealed that com-

pared to sole organic (OR) and mineral N (MR) applications the combined application

(ORMR) does have a significant positive effect on maize grain yield productivity and AE of N,

albeit more pronounced at higher N rates and for high-quality organic resources. For yield var-

iability and SOC, however, the combined effect is negligible and treatment effects are mainly

determined by the organic resource rate and quality. The N rate and organic resource quality

were found to play an important role overall, such that compared to low-quality organic

resources, increasing amounts of high-quality resources allow for (i) an increased productivity

and AE, (ii) a less rapidly declining AE with N rate, (iii) a decreased yield variability, and (iv)

an increased SOC.

While the ISFM combined application may not unequivocally outperform the sole applica-

tions on individual CSA pillars, the practice has been found to be appropriate for simulta-

neously and optimally addressing all three pillars and hence can be considered climate-smart.
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This paper provides evidence for the need of managing both mineral and organic resources in

a holistic and integrated approach, such as aspired by the ISFM framework.
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