

RECSOIL Recarbonization of global agricultural soils (RECSOIL) and the GSOC-MRV Protocol

Ronald Vargas Secretary of the Global Soil Partnership, FAO A healthy soil is capable of providing most terrestrial ecosystem services, therefore contributing to achieve the SDGs and human well-being

The current global challenges

United Nations Convention to Combat Desertification

Desertification, drought, Land degradation

Convention on Biological Diversity

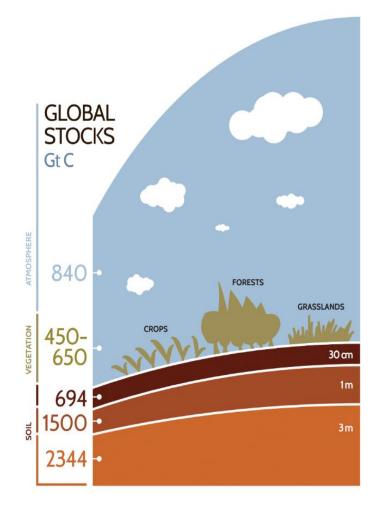
Protecting, conserving, restoring Biodiversity

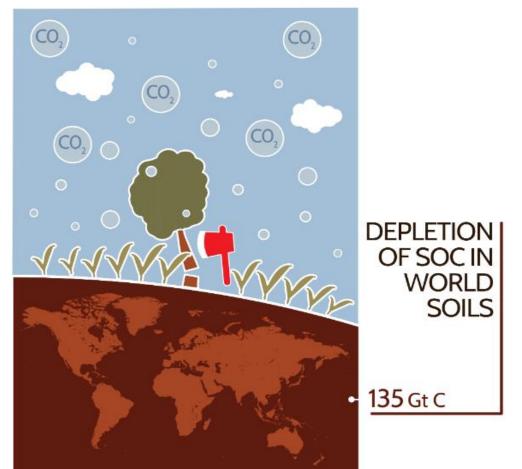
United Nations Framework Convention on Climate Change

Climate change – Mitigation and Adaptation

Food and Agriculture Organization of the United Nations

Food security and nutrition


Soil carbon, the heart of the soil



Healthy soils = SOC

Carbon stock in soils is huge, but soil degradation is directly associated with SOC loss, hence EMMISIONS as CO₂ and N₂O

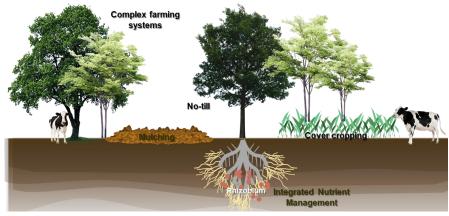
Gt = gigatonne = 10¹⁵ g C = billion tonnes

Soils: one solution

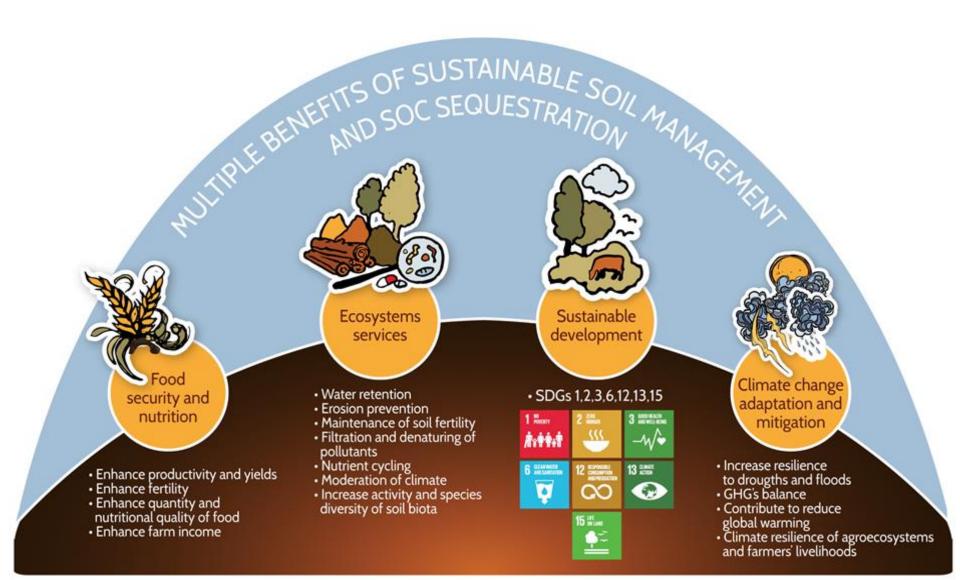
Potential global contribution of response options to mitigation, adaptation, combating desertification and land degradation, and enhancing food security

Panel A shows response options that can be implemented without or with limited competition for land, including some that have the potential to reduce the demand for land. Co-benefits and adverse side effects are shown quantitatively based on the high end of the range of potentials assessed. Magnitudes of contributions are categorised using thresholds for positive or negative impacts. Letters within the cells indicate confidence in the magnitude of the impact relative to the thresholds used (see legend). Confidence in the direction of change is generally higher.

Res	ponse options based on land management	Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Cost
	Increased food productivity	L	М	L	М	н	
Agriculture	Agro-forestry	М	м	М	М	L	•
	Improved cropland management	М	L	L	L	L	••
	Improved livestock management	М	L	L	L	L	
	Agricultural diversification	L	L	L	М	L	•
	Improved grazing land management	М	L	L	L	L	
	Integrated water management	L	L	L	L	L	••
	Reduced grassland conversion to cropland	L		L	L	- L	•
Forests	Forest management	М	L	L	L	L	••
	Reduced deforestation and forest degradation	н	L	L	L	L	••
	Increased soil organic carbon content	н	L	м	М	L	••
Soils	Reduced soil erosion	$\longleftrightarrow L$	L	М	М	L	••
So	Reduced soil salinization		L	L	L	L	••
	Reduced soil compaction		L		L	L	•
s	Fire management	М	М	М	М	L	•
stem	Reduced landslides and natural hazards	L	L	L	L	L	
Other ecosystems	Reduced pollution including acidification	$\longleftrightarrow M$	М	L	L	L	
here	Restoration & reduced conversion of coastal wetlands	М	L	М	М	←> L	
G	Restoration & reduced conversion of peatlands	М		na	М	- L	•
Response options based on value chain management							
Demand	Reduced post-harvest losses	н	м	L	L	н	
	Dietary change	Н		L	Н	Н	
	Reduced food waste (consumer or retailer)	н		L	М	М	
-	Sustainable sourcing		L		L	L	
Supply	Improved food processing and retailing	L	L			L	
	Improved energy use in food systems	L	L			L	


Options shown are those for which data are available to assess global potential for three or more land challenges. The magnitudes are assessed independently for each option and are not additive.

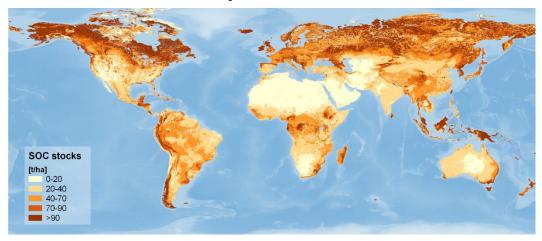
Key for criteria used to define magnitude of impact of each integrated response option							
			Mitigation Gt CO2-eq yr ⁻¹	Adaptation Million people	Desertification Million km ²	Land Degradation Million km ²	Food Security Million people
ke		Large	More than 3	Positive for more than 25	Positive for more than 3	Positive for more than 3	Positive for more than 100
Positive		Moderate	0.3 to 3	1 to 25	0.5 to 3	0.5 to 3	1 to 100
•		Small	Less than 0.3	Less than 1	Less than 0.5	Less than 0.5	Less than 1
		Negligible	No effect	No effect	No effect	No effect	No effect
Negative	-	Small	Less than -0.3	Less than 1	Less than 0.5	Less than 0.5	Less than 1
Nega	-	Moderate	-0.3 to -3	1 to 25	0.5 to 3	0.5 to 3	1 to 100
	-	Large	More than -3	Negative for more than 25	Negative for more than 3	Negative for more than 3	Negative for more than 100
	\longleftrightarrow	Variable: Ca	n be positive or nega	tive no	data na	not applicable	

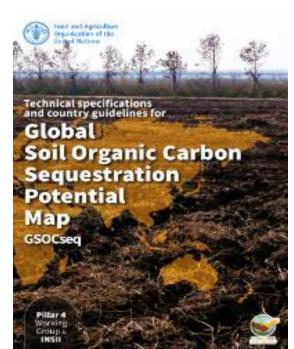

Confidence level				
Indicates confidence in the				
estimate of magnitude category.				
H High confidence				
M Medium confidence				
L Low confidence				
Cost range				
See technical caption for cost				
ranges in US\$ tCO2e ⁻¹ or US\$ ha ⁻¹ .				
High cost				
Medium cost				

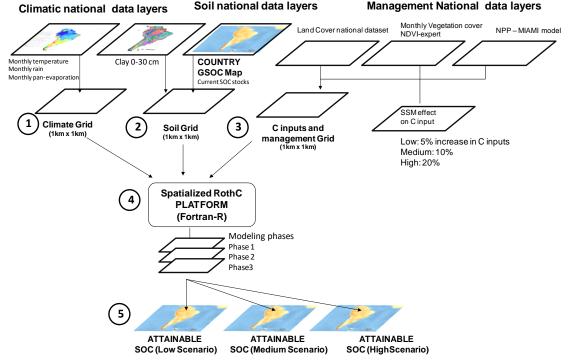
Low cost

Scaling-up sustainable soil management practices based on SOC sequestration

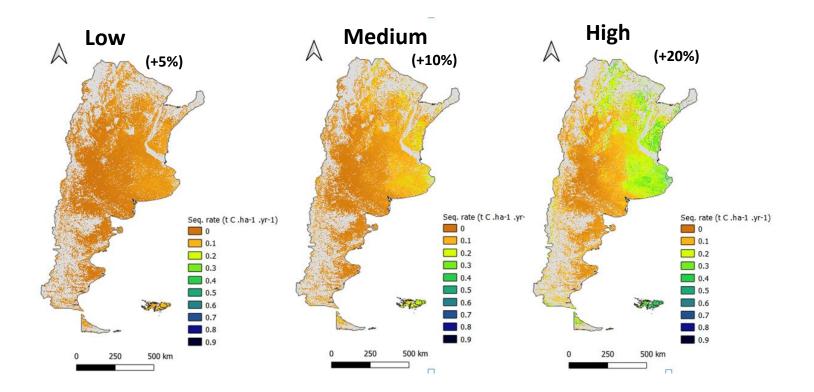
- Uncertainty about additionally and permanence.
- Measuring SOC: not an easy and cheap task, accuracy.
- Unavailable harmonized SOC MRV Protocol at farm level.
- Recognizing farmers as the main vehicle of change.
- Lack of financial incentives for implementing Good practices.
- Lack of technical support to farmers.
- Long-term investment.
- SOC sequestration not at scale yet.
- Focusing on SOC only, and not on Soils as provider of Ecosystem Services.
- We forget about Nitrogen and methane

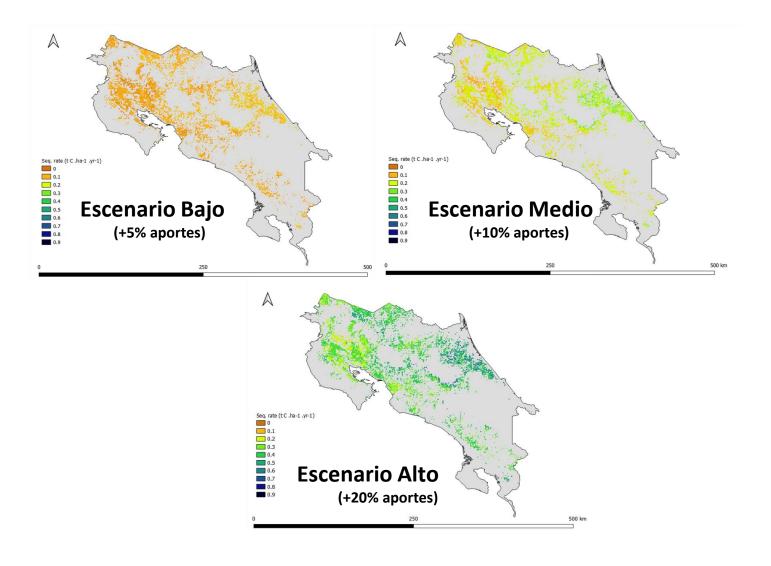





Technical feasibility (current stocks-potential)

GSOCmap – current stocks




Global Soil Organic Carbon Sequestration Potential Map (GSOCseq map)

Standard Scenarios

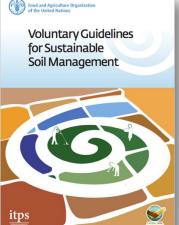
Agreement to work with RECSOIL/ access to RECSOIL toolkit

Written Agreement between individual farmers or farmer associations to implement RECSOIL (access to technical support and financial incontinue)

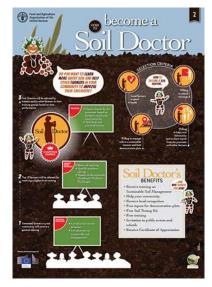
GSOC map GSOCseq map

Global SOC Monitoring System

Manual of good practices


SOPs for soil organic carbon

VGSSM + SSM Protocol


GSOC-MRV Protocol

Implementation of Good SOC Practices (technical support and financial incentives)

- According to the local context, selection of the good practices.
- Technical support for the implementation of the good practices on the ground.
- Financial incentives (3 payments, establishment, after 4 years and at year 8).
- Continuous support and monitoring.
- Soil Doctors for farmers.

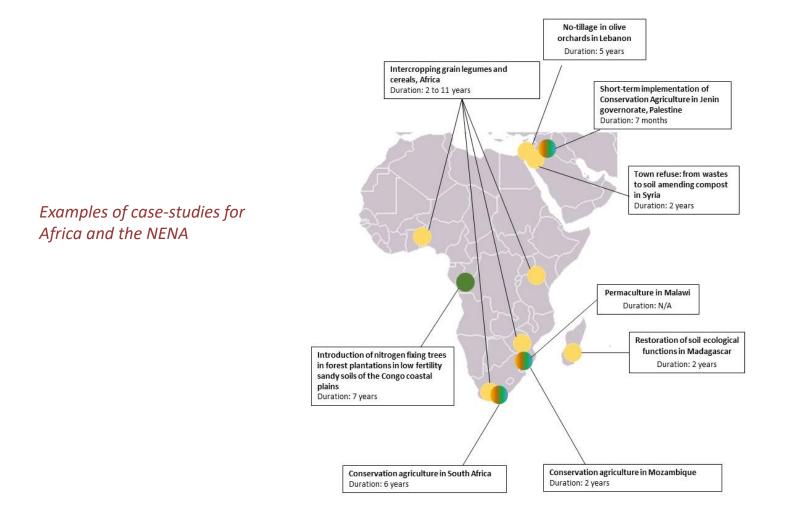
A peer-reviewed meta-analysis of the main hot spots of SOC, SSM practices and farming approaches

WHERE ?

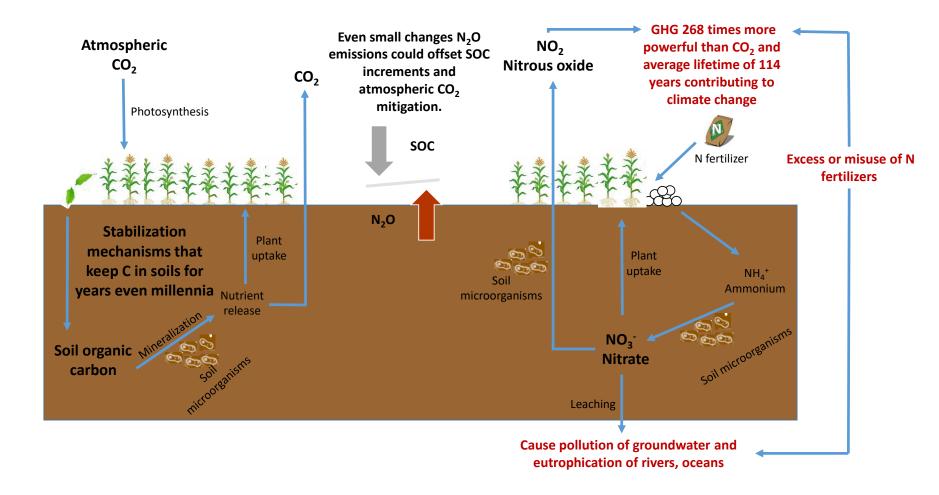
In all landscapes : Croplands, Grasslands, Wetlands, Forests, Urban areas

HOW ?

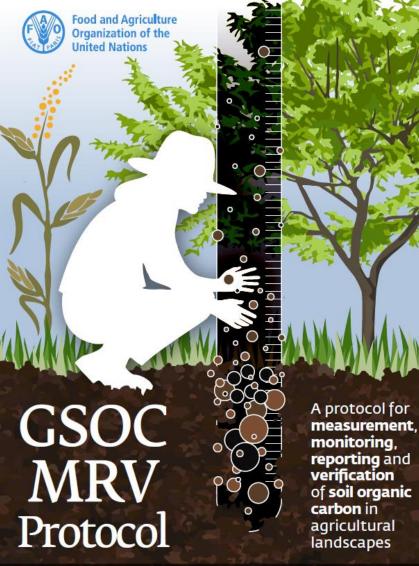
Presented as factsheets


+ Complemented by casestudies of practical applications of these SSM practices

HOT SPOTS	PRACTICES AND APPROACHES
Description and importance of the hot-spot Geographical repartition SOC stocks (quantitative) Provision services associated GHG emissions and climate change impact Challenges and trends	Description of the practice Geographical application Potential for SOC sequestration (quantitative) Provision services associated Socio-economic benefits GHG emissions and climate change impact Points of attention to facilitate implementation



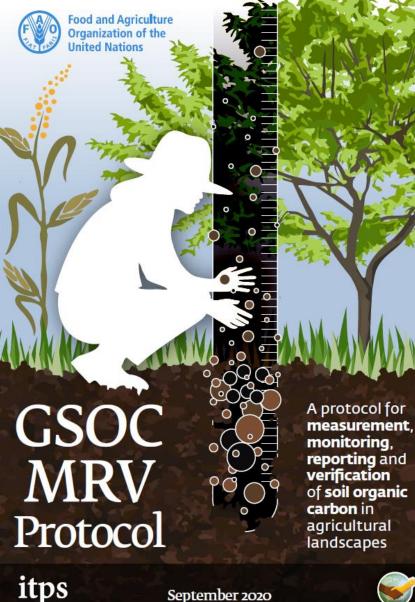
+370 experts

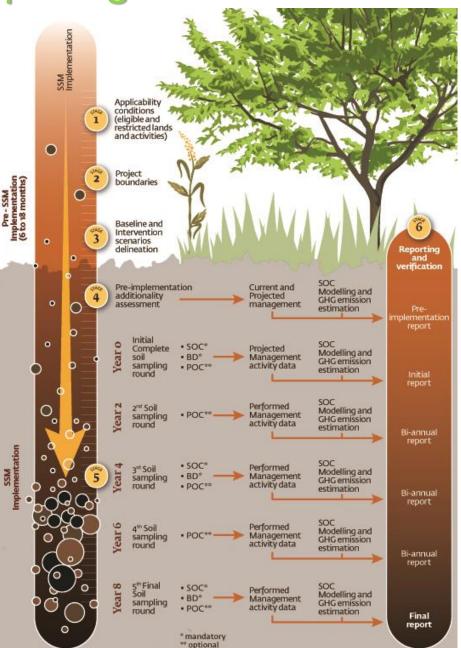

Recarbonization of global soils: A technical manual of best management practices

The Nitrogen problem

Measuring, monitoring, reporting and verification

reporting and of soil organic


- Measurement of Baseline at farm level (before good practices are implemented).
- Second measurement: after 4 years of implementation, measurement of additionally of SOC and ecosystem services.
- Final measurement: at 8 years of implementation (reporting of SOC seq. and multiple ecosystem services achieved).
- Verification by VVBs.
- Intermediate measurements to demonstrate change, can be alternatively done using POM.
- All data feeding the **Global SOC** Monitor System.

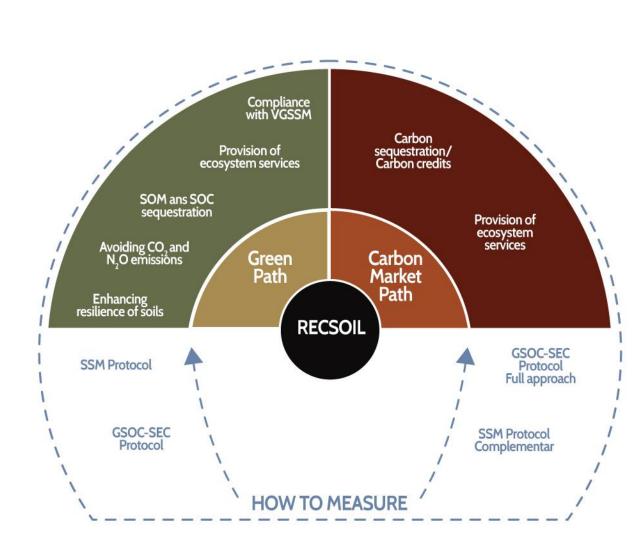


September 2020

Measuring, monitoring, reporting and verification



September 2020



Measuring, monitoring, reporting and verification

Indicator	Proposed Parameter/ metric	Laboratory methods	Sample characteristics	
Soil productivity	Agricultural productivity or biomass (t ha-1)	Dry weight of vegetation quadrats, or yield measurements	Quadrat method or yield measurement	
Soil organic carbon	% organic carbon	Walkley- Black method <u>http://www.fao.org/3/ca7471en/CA7471EN.pdf</u>	Representative soil sample (200 g)	
Soil physical properties	Bulk density	Bulk density (kg dm ⁻³)	Undisturbed representative sample with known volume	
Soil biological activity	Soil respiration rate $(gCO_2 m^{-2} d^{-1})$	Soil respiration in dynamic closed chambers method (DC-method).	Representative soil sample (200 g).	

RECSOIL MARKET PLACE

Important messages

- Climate change: an opportunity for scaling up sustainable soil management.
- While the centre is **SOC**, we should not forget that our efforts should be **Soil Health**. Sustainable Soil Management for **Multiple benefits**.
- Many initiatives (SOC Race): but we need to balance (demand for cheap carbon credits vs ethics/offsseting emissions and real costs for making a change.
- MRV: its use is flexible and varies according to the objective and use (green path or carbon market).
- **Farmers at the center**: start from local knowledge, value chains, gender, youth as transversal considerations.

THANK YOU FOR YOUR ATTENTION!

For more information, please contact <u>Ronald.Vargas@fao.org</u>

